122 2. OTHER COMPONENTS IN PHOTOMETRIC SYSTEMS

reputation of publishing good data rather than garbage. Those who insist
on using students as cheap labor should at least use engineering students
instead of astronomy or physics students for design and construction
work.

3. OBSERVATIONAL TECHNIQUE AND DATA REDUCTION*

3.1. Atmospheric Extinction

3.1.1. Introduction

“Die enorme Bedeutung der Extinktion filr die astrophysikalische
Forschung ist offensichtlich... .” :

“Die Lehre von der Extinktion ist deshalb eine der Grundlehren der
Astrophysik.”

With these strong words, Schoenberg! introduced his discussion of
extinction in the Handbuch der Astrophysik. Perhaps because his treatment
is so impressive, little has been done since. However, the intervening
forty years have brought photoelectric techniques of high precision into
general use. These techniques not only allow a more accurate experi-
mental study of extinction; they also demand a reexamination of the
theoretical basis of extinction corrections, if the full accuracy of the best
observations (a few thousandths of a magnitude) is to survive the process
of data reduction.

Unfortunately, many observers believe that it is difficult to determine
the extinction accurately, and that an accurate measurement is not
necessary anyway, because mean values are adequate for photometric
nights, especially in differential work. These opinions are primarily based
on Stebbins and Whitford’s® assertion that ‘it is impractical to determine
the extinction thoroughly and accomplish anything else,” and Hiltner’s?
statement that “the extinction is less variable than the accuracy with
which it can be determined during 4 night when the extinction observa-
tions are interspersed with a significant number of observations on pro-

1 E. Schoenberg, in “Handbuch der Astrophysik,” Band II, p. 1. Springer, Berlin,
1929.

? Joel Stebhins and A. E. Whitford, Astrephys. J. 102, 318 (1945).

*W. A. Hiltner, Astrophys. J. Suppl. 2, 389 (1956).

* Part 3 is by Andrew T. Young
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124 3. OBSERVATIONAL TECHNIQUE AND DATA REDUCTION

gram stars.” Also, there is a widespread belief that stars at very large
air masses must be observed in order to determine the extinction ac-
curately.

The purpose of this part is to show how accurate extinction measure-
ments can be made easily and without going to great air masses, and
that such measurements are in fact desirable. A thorough discussion of
the pitfalls of extinction measurement and correction is given, both from
the observational side and from the point of view of making accurate
reductions.

In order to optimize the extinction determination, it is necessary to -

understand the random and systematic sources of error in the ohserva-
tional data, and in particular their dependence on air mass. Many of
these have been described in detail in previous sections, and will only be
mentioned briefly here.

3.1.2. Basic Error Analyses

Initially, let us examine an idealized situation without systematic
errors. We assume that the random error of a photometric measurement
is a function of air mass alone, since it is common experience that the
error is an increasing function of air mass.

For convenience, we shall at first assume the standard error of measure-
ment ¢ is proportional to some power p of the air mass M. (More general
laws will be considered later.) Thus if

&= e, M7, BNERRY
the statistical weight of a measurement is
w oc &=t oc M-, (3.1.2)

Although, in practice, this weighting is not usually taken into account,
giving all data equal weight is equivalent to assuming the errors are
independent of air mass, which is contrary to experience.

3.1.21. Two Measurements. 'To illustrate our general approach, sup-
pose we try to find the extinction from just two measurements of a star,
one in the zenith and the other at air mass M. If the observed magnitudes
are hzl and my,, the extinction coefficient 4 is

A = (my; — m,))(M — 1). ’ (3.1.3)

The error to be expected in 4 can be found from the law of propagation

3.1. ATMOSPHERIC EXTINCTION 125

of errors, assuming the two measurements to be independent:
04% = [0y 0A)0m ] + [og; 0A[Dmy]2. (3.1.4)
Equation (3.1.1) gives o, and o0y,, so we find
0,2 = [e®/(M — 1)2](M? + 1). (3.1.5)

Figure 1 shows the graph of Eq. (3.1.5) for a few values of p. For p > 1,
there is a value of M for which 0,2 is a minimum, i.e., from which the
extinction is most precisely determined. The condition for this mini-
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Fre. 1. Variance o,4° of an extinction determination from two observations, in units
of the variance of the zenith measurement &, The error of one observation at M air
masses is assumed equal to g,MP? [see Eq. (3.1.5) in the text].
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mum is
8(0,2))dM =0 (3.1.6)
or
T 2pDr (M 4 1)
0= e I (3.17)
which reduces tb -
(p — DM — pMo-1 — 1 = 0. (3.1.8)

Equation (3.1.8) has no root for p << 1, so in this case M should be as
large as possible. However, we shall show below that p ~ 2 in most
cases; for p = 2, Eq. (3.1.8) has a root near 2.1. Thus, in this case, the
extinction is best determined if the low-altitude observation is made
near two air masses. At larger values, the rapid increase in oy more than
offsets the advantage of increasing (/4 — 1); in the example, 0,? is
twice the minimum value if M = 4.5 air masses.

The above analysis indicates both the method to be used, and an im-
portant conclusion: that best results may be obtained if very large air
masses are avoided. )

3.1.2.2. n Measurements. From a statistical point of view, we must
aveid extremely large air masses because such observations have very
low weight. Thus we can improve the extinction determination if we
devote more time to the observations at large /4, thereby increasing the
weight of the low-altitude data.

The analysis is quite similar to that used in pulse-counting to determine
the optimum distribution of observing time between background and
signal (see Part 1, Section 1.5.2).%b

We thus suppose that a fraction f of the total observing time is spent
at the larger air mass M,, and a fraction (1 — f) is spent at the smaller
air mass M; (which need not, in general, be unity). If there are a total
of n observations of equal duration, and ¢, is again the standard error of
a single observation in the zenith, then the mean magnitude observed
near the zenith is m, with standard error ¢,, where

o, = gM,?[[(1 — f)n]i2 (3.1.9)
and similarly

oy = eMyP[( fn)V. © (3.1.10)

3 A T. Young, Appl. Opr. 8, 2431 (1969).
% C. W. McCutchen, Phil. Mag. (8th Ser.) 2, 113 (1957).
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Since
A = (my — m)|(M, — M,), (3.1.11)
we have
1 &\ M My
UA2_7—1(1‘42—M,>[(1 e ] (3.1.12)

Now, in order to minimize ¢, we have, in addition to the analog of Eq.
(3.1.6), the condition
d(o4®)0f = 0. ‘ (3.1.13)

The former yields
(0 — D — )M — p(1 — [)MMr=2 — fM2r =0 (3.1.14)

and the latter gives
M — (1 — f )M = 0. (.1.15)

In general, o, will be smallest when M, is as small as possible, i.e.,
M, = 1. This ideal can only be approached in practice; however, it can
be approached rather closely, as M, < 1.1 within 24° of the zenith. We
therefore adopt M, = 1 for the next part of the discussion. Even with
this simplification, the conditions for minimum o4 are rather complex

(0 — D)1 —)Mp —p(1 — M2 —f=0  (3.116)

and
SP—0 —fyeMr=0. (3.1.17)

If we solve Eq. (3.1.17) for M,, we find

My = [f](L = /)] (3.1.18)
We can then replace M, in Eq. (3.1.16) with Eq. (3.1.18), collect all

terms involving p on one side, and raise the result to the pth power to
find

@ =D P =0 —f)f = M7 (3.1.19)
or

(of = 1y = PP (1 =) = 0. (3.120)

We can solve Egs. (3.1.18)-(3.1.20) exactly only for simple rational
values of p. Foi example, for p = % we readily find f= &, M, = 4;
for p = 2, we obtain f = (2 - 22)/4 = 0.854, M, = 1 - 212 = 2.414.
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In general, f can be found by solving Eq. (3.1.20) for (1 —f) and
iterating

fern =1 — fill8fi — Diphil. (3.1.21)

Then M, follows from Eq. (3.1.18). The resﬁlting values of M and f
are shown as functions of p in Fig. 2, along with the corresponding values
of (on'? ). (

1.0

w— 0.9

Fic. 2. Values of MM, and f for optimum extinction determination, as functions of p.
The standard deviation o, of the extinction coefficient is also shown for these optimum
conditions, in units of (g,/n'?).
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In order to show how rapidly the quality of the extinction measurement
deteriorates as f and M, deviate from their optimum values, we have
computed contours of constant ¢,* (in units of &?/r) in the (f, M,)
plane. To show the results in terms of observational variables, we have
plotted the contours in the (f, ) plane, assuming A/ = sec 2. These

" plots (see Figs. 3 and 4) show that the observations should be planned
carefully in order to determine A precisely. In general, values of f near
0.8-0.9 and values of M near 24 (or values of # from 60 to 75°) give the
best results. In particular, stars within about 10° of the horizon should
be avoided.

1.0 T T

z

Fic. 3. Contours of equal extinction-coefficient variance o4* in units of the minimum
variance, for p = 1.5. The contours are separated by a factor of 2'/2. Thus the weight
of an extinction determination of the innermost contour is 0.707 of the weight of an
extinction determination under optimum conditions (indicated by the large dot); the
weight on the second contour is half the optimum; and, in general, the weight of an
extinction determination along the jth contour out from the center is 1/24/% of optimum.
The cut through the contoured surface along the line f = 0.5 corresponds to the curve
for p = 1.5 in Fig. 1.

The following properties of Figs. 3 and 4 are of practical interest: (1)
The contours are more closely spaced on the large 2 side of the optimum
than the small z side. Thus it is safer to err in the direction of lower air
masses; a 10° error in altitude is less harmful in this direction. (2) At
smaller than optimum air masses, the best value of f approaches 0.5.
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Fic. 4. Contours as in Fig. 3, but for p = 2.0.

Thus, (3) the common practice of observing each extinction star once
on the meridian, and once each at 60 to 70° zenith distance in the east
and in the west (giving f = %) gives a result not far from optimum. 4)
The innermost contour comes very near to the line f = 1 in the neigh-
borhood of # = 60-70°. Thus it is practically impossible to have too
many observations in the 2-3 air-mass range, if a few extinction stars
are observed near the zenith.

Of course, the above analysis is rather idealized. In order to investigate
the actual dependence of ¢ on M, and hence to determine realistic values
of f and # to be used in planning observing programs, we consider the
actual behavior and magnitude of both random and systematic errors
in the next sections. We can then reexamine the optimization problem in
more realistic terms.

3.1.3. Random Errors in Photometry

We shall consider sources of random error in order of increasing
dependence on zenith distance, beginning with errors independent of
air mass.

3.1.3.1. Fixed Errors. The fixed random errors are primarily instru-
mental, and can in principle be eliminated; but in actual practice, they
are usually significant. The most obvious instrumental errors are random
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variations in power supplies and amplifiers (either intrinsic, or due to
line-voltage or line-frequency variations); these can be reduced to
negligible levels by using well-regulated and stable units and (if line
stability is a problem) line regulators—preferably of the electronic servo-
regulator type rather than the simple transformer type, which are very
sensitive to frequency and waveform changes. '

Random changes in photomultiplier dynode gain may be caused by
cesium migration within the tube. These changes are usually rather slow,
and may be measured by observing a standard source. However, such
sources are often so faint that photon noise from the source becomes an
important cause of random error. Random dynode voltage variations
may alsg be caused by noisy components, such as Zener diodes or carbon
resistors. )

Components that work well at room temperature may become noisy -
at low temperatures. Leakage is often a problem if water vapor is allowed
to condense on sockets at low temperatures. Silica gel is a much poorer
drying agent than is generally supposed; if it is used, it should be kept
cold, as warm silica gel may easily have a higher water vapor pressure
than a cold socket, and thus act as a source of water rather than a sink.
Silica gel has also been found to emit light spontaneously, so it should
be optically isolated from the photomultiplier.

Random photomultiplier temperature variations affect dynode gain and
cathode spectral response. These variations are usually large and sig-
nificant in dry-ice-cooled boxes,® but can be much reduced by either
(a) using a heat-transfer liquid such as ethyl acetate or Freon-11 on the
dry ice; (b) using water ice instead of dry ice; (c) using a servo-controlled
refrigeration system; or (d) using no cooling at all. Method (a) should be
used only with very noisy photomultipliers which require extreme cooling,
such as 1P21s and tubes with S-1 cathodes. Method (b) is satisfactory
with quiet end-on tubes such as the EMI 6256, in which the noise reaches
its minimum value near 0°C;3 this method has been used at the Cape
Observatory with good results. It is preferable to (a) because water has
much higher heat capacity and latent heat of fusion than dry ice; also,
there is no need to vent escaping gas, so the box can be completely closed
and spillage is eliminated. Unfortunately, many cold boxes are not
watertight. If these are replaced by servo-regulated systems (c), the dead-
band of the system is the source of random temperature variations. If

"o A. T. Young, Appl. Opt. 2, 51 (1963).
M A. T. Young, Rev. Sci. Instrum. 36, 394 (1967).
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cooling is abandoned altogether, the ambient temperature should be
monitored, so that corrections for temperature effects can be applied.
This method (d) has been used very successfully by Stock at Cerro Tololo,
and is best used where the ambient temperature is nearly constant through
the night.

Generally, dark noise is negligible for the bright stars used to measure
extinction. However, in some photometers a spurious “dark’ noise may
be caused by light leaks, especially from indicator or reticle-illumination
lamps within the photometer head.

A final instrumental effect is the constant reading error. This is on
the order of 0.001 of full scale on strip charts,® but may become a larger
fraction of a magnitude if small deflections are used. In digital systems,
this error is 1/(12)'/® of the least count (root mean square), and can be
kept negligible by the use of four or more significant digits.

All the above errors can be measured by repeated observations of a
constant light source during several hours. If a standard source is not
part of the photometer, a well-regulated incandescent lamp can be used.

One constant source of error that is often overlooked is the uncertainty
in standard-star values, if these are used to determine the extinction.?
For example, the internal errors of the 108 standards which define the
UBV system® are about 0.04 mag (standard error) per observation in V;
even for stars with 5 or more observations, the estimated standard error
is 0.018 mag. Considering that transformations between instrumental and
standard systems are never perfect, owing to differences in passbands (and
possibly to changes in the stars themselves since the standards were
set up), we may adopt a constant rms error of 0.02 mag/star if Hardie's
method is used. We shall return to this later.

3.1.3.2. Errors Nearly Proportional to Air Mass. The most obvious
error source proportional to M is a random change in the extinction
coefficient itself. That is, if A changes by A4, the magnitude of a star
at M air masses changes by M 4A4. However, it is not clear that there is
any reason to expect random changes in A itself. Rather, one should
expect the variable (aerosol) component of atmospheric opacity to be
carried along by the atmospheric turbulence as a passive additive. In this
case, the autocorrelation function of this component should decrease

3 A. T. Young, Observatory 88, 151 (1968).

4 R. H. Hardie, in “Astronomical Techniques” (W. A. Hiltner, ed.), Chapter 8, p.
178. Univ. of Chicago Press, Chicago, Illinois, 1962.

5 H. L Johnson and D. L. Harris, Astrophys. J. 120, 196 (1954)
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with the 2 power of the distance;5 because of this correlation, deviations
from the mean extinction should grow about like M%%. A full analysis
of this problem depends on a knowledge of the outer scale of the tur-
bulence and its variation with height, and will not be attempted here.

Near the zenith, sky brightness varies almost proportionally to 4.
This may be appreciable on moonlit nights, especially if large focal-
plane apertures are used, or in daytime work. However, if the sky is
good and sky measures are made for each star, only the photon noise
from the sky should contribute a random error; this varies about as M2
near’ the zenith. At large zenith distances, the atmosphere becomes
optically thick and sky noise is nearly constant.

3.1.3.3. Errors Proportional to Higher Powers of M. As shown in

Section 2.1.1.1.2, the low-frequency component of scintillation noise

varies as the § power of M near the meridian (at right angles to the

upper-air winds), and as the square of M near the prime vertical (looking

parallel to the wind direction). In general, the scintillation noise &g
is given by

eg? = S%sec? z[1 4 tan® z sin®(0 — 0,)]~*2
= S2M[1 + (M2 — 1) sin®(0 — 0,)]-"3, (3.1.22)

where 0 and 0, are the star and wind azimuths, and we again use M
~ sec . (The dependence of .S on'telescope aperture and other param-
eters was discussed previously.)

For large M, Eq. (3.1.22) is proportional to M?, except in a small
range of 0 near 6,. Thus, on the average, &g is proportional to M*2
If we average Eq. (3.1.22) over 0, we find

= (1)27) j:" 5%(0) do
= (2n)SM? J'”/z [L 4+ (M2 — 1) sin® 0] do
— (2m)SMOK(M® — 1)2[M], (3.1.23)

where K(x) is the complete elliptic integral of the first kind. Figure 5

shows the behavior of £g*/.S* as a function of M, together with M and
M?* for comparison. For moderate air masses, the scintillation standard

&V, 1. Tatarski, “Wave Propagation in a Turbulent Medium.” McGraw-Hill, New
York, 1961 (reprinted in 1967 by Dover, New York).



3. OBSERVATIONAL TECHNIQUE AND DATA REDUCTION

105 T T T

1 1 1 i

1 2 5 10
M

Fig. 5. Azimuth-averaged low-frequency scintillation noise as a function of air
mass (log-log plot). Cubic and fourth-power laws are shown for comparison,

error is proportional to the 1.75 power of the air mass, but becomes
asymptotically proportional to the § power for very large air masses.

3.1.3.4. Errors Exponential in M. Since the extinction makes a star
grow fainter exponentially with M, the noise due to photon statistics
grows exponentially with 4. For, the observed brightness of a star of
apparent magnitude m is

I=1I,. 10-04m, (3.1.24a)

so we have

oy = CIV2 — C' . 10-0-2m, (3.1.24b)

for the photon noise in intensity units. The photon-noise error, in mag-
nitudes, is
gy = —2.5 logy[(L 4 or)/1]
= 1.08574 In(1 4 o4/I)
=~ 1.085740/I, (3.1.25)

20
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Jif o, <€ I. Thus

&q == (const)10+2-*" = (const) exp(0.46052m). (3.1.26)

However, the apparent magnitude m is a function of air mass M

m=my—+ A4 - M, (3.1.27)

where A4 is the extinction coefficient and m, is the extra-atmospheric
magnitude. Thus,

&y = (const)10+0-24-M — (const) exp(0.464M),  (3.1.28)

where we absorb the m, term in the exponent into the constant.

In UBV photometry, photon noise is g;anerally smaller than scintillation
noise for naked-eye and most D stars at moderate air masses (cf.,
Table I of Part 2). However, for very large air masses, or for narrow-
band systems—especially those using the low-efficiency 8-1 cathode—
photon noise may be important. This is generally true in spectropho-
tometry, where passbands as narrow as 20-50 A are often used.

Because of the importance of this special case, we have carried through
the error analysis for pure photon noise (see Fig. 6). 1f we have

(g, M) = &, exp[0.46(my -+ AM)] = C exp(0.4640) (3.1.29)

in place of Eq. (3.1.1), then

. ( C )2[ exp(0.464M,)
o=\, — o, i

The minimization with respect to M, gives

[046A(M, — M,) — 2] exp[0.46A(M, — Ml)j = 2( ; f: 7 )m, (3.1.31)

. exp(0.4641,) } (3.1.30)

="

and that with respect to f gives
exp[0464(M, — M,)] = [fi(1 — )] (3.1.32)

The exponential factor can be eliminated by taking the ratio of Eq.
(3.1.31) and (3.1.32), which leads to

0.46A(M, — M,) = 2/, | v (3.1.33)

M, = M, + (2/0.464f ). (3.1.34)
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Combining Egs. (3.1.32) and (3.1.33) we have

LA = )1 = exp(2/f), (3.1.35)

whose solution is f == 0.8322967191..., independent of 4. (Note that
this value is similar to those found for moderate power laws.) The
optimum value of M, then follows from Eq. (3.1.34). In general, this
value is rather large; for 4 < 1.0, M, > 6 for M, = 1.

12

F1G. 6. Curves analogous to Fig. 1 for f = } and noise due only to photon statistics.
The parameter is the extinction coefficient 4 in magnitudes per air mass.

In practice, 4 is usually so small that scintillation noise dominates at
moderate air masses. Of course, if photon noise is important, only the
very brightest stars in the sky should be used to determine the extinction,
in order to keep the observational errors low.

3.1. ATMOSPHERIC EXTINCTION 137

3.1.4. Systematic Errors in Photometry

We may generally distinguish between position-dependent and time-
dependent systematic effects, although this distinction is not always
clear-cut. For example, temperature effects usually show up as time-
dependent errors, as the ambient temperature decreases during the night.
However, instrumental temperature effects may in some cases show a
positional dependence. For example, consider the case of a very poorly
constructed “‘cold box” made of balsa wood, with only the photocell
housing made of metal. When the telescope was turned so the dry ice
lay against the metal cell housing, the cell rapidly cooled some tens of
degrees; when the telescope pointed in other directions, the cell became
much warmer. The result was large (several tenths of a magnitude) zero-
point shifts, partially correlated with position.

Of course, it is absolutely necessary to have a linear photometer;
otherwise, nonlinear or even “fatigue” effects, which depend on the
apparent brightness of a star, will cause systematic errors correlated
with air mass—especially on the brightest stars observed, which are the
ones used for measuring the extinction. One should be careful about
“correcting” for instrumental nonlinearities, as these corrections are
likely to show significant variations with temperature, line voltage,
scintillation, and other variables.

We now consider purely position-dependent and time-dependent
systematic errors, in turn. (Systematic errors inherent in observational
or reduction techniques will be deferred to the following section, as
they are generally related to each other.)

3.1.4.1. Position-Dependent Errors. Positional systematic effects are of
two types: instrumental and atmospheric. The latter are usually a func-
tion of air mass, and are therefore more difficult to detect from ordinary
photometric observations.

3.1.4.1.1. Macneric Errects. The best-known instrumental effect is
that of external magnetic fields on the photomultiplier. From data
published by the manufacturers, one can estimate the magnitude of the
effect for different types (see Table I). No data are available for the
close-spaced EMI tubes such as the 6256 or 9502; these should be some-
what less sensitive to magnetic fields than the wide-spaced 6097. Also,
no data are available on the ITT tubes (FW-118,-130, etc.), but
experience indicates they are similar in magnetic sensitivity to the EMI
box-and-grid tubes (9524, etc.). In some cases, the effect differs by an
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TapLe 1. Magnetic Effects in Photomultipliers

Response change  Field required for 1%,

Ty mod rst
pe Dynode system to 1-G field (% response change (G)
RCA 1P21  Focused, squirrel-cage 5 0.2
RCA. 8575 Linear focused 40 0.15
EMI 6097 Unfocused, venetian-blind 5 0.2
EMI 9524  Unfocused, box-and-grid 10 04 -

order of magnitude from one field orientation to another; the table is
based on the direction of maximum effect.

The earth’s field is on the order of 4 to § G, depending on the location
of the observer. However, owing to magnetization of the telescope and
dome, considerably larger fields may occur at the photometer. In general,
fields must be kept below 0.1 G. The adequacy of magnetic shielding can
be checked by looking at a standard source while moving either telescope
or dome.

3.1.4.1.2. GraviTaTioNaL Errects. Gravitational effects may result
from flexure in the telescope or photometer, or even within the photo-
multiplier. For example, Moreno® has reported a position-dependent
error within the photometer amounting to 0.02 mag.

Flexure effects within a photomultiplier may be due to sagging of grid

wires or motion of the entire multiplier structure within the envelope; .

a tube that “clunks” when shaken gently from side to side should be
‘rejected. Such fexures can be detected by moving the telescope while
looking at a standard source, and cannot be distinguished from magnetic
effects without further tests. However, some standard sources may also
show gravitational effects: loose particles of phosphor may migrate
within sealed, radioactively excited sources.

3.1.4.1.3. Dirrracrion PLus Senmve anp Dispersion.  Another im-
portant class of errors results from the exclusion of some of the measured
star’s light by the focal-plane diaphragm. These effects are discussed in
Section 2.1.1.

® H. Moreno, dstron. Astrophys. 12, 442 (1971).
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3.1.4.1.4. Rerracrion Errects. Dispersion is not the only source of
systematic error due to atmospheric refraction. In principle, one should
also consider the foreshortening of the telescope aperture at large zenith
distances, somewhat like the foreshortening of a penny seen obliquely
at the bottom of a glass of water. This causes the vertical extent of the
extra-atmospheric bundle of rays intercepted by the telescope to be
reduced by a factor equal to the cosine of the atmospheric refraction.
However, even at the horizon, the refraction is only about half a degree,
so this factor always lies between unity and cos 35 arcmin = 0.99995.
The maximum systematic error is thus 0.00005 mag, so this effect can
safely be neglected.

A more serious error of the same general kind arises because all objects .
have a finite angular extent. In this case, the differential refraction between
upper and lower limbs reduces the solid angle subtended by the object.
Since no optical system (such as the atmosphere) can increase the surface
brightness of an object, the total stellar magnitude becomes fainter.!
In the flat-earth approximation, the refraction is r(2) = (z — 1) tan
and the compression of a small disk of diameter D is

AD = D(n — 1) d(tan z)/dz _
= D(n — 1)sec 2 = D - M*u — 1), (3.1.36)

where 7 is the atmospheric refractive index. Since (n — 1) ~ 3x 104,
the fractional change, which is nearly equal to the error in magnitudes, is

AD|D ~ (3x 10-4)2. (3.1.37)

This amounts to a hundredth of a magnitude at about 6 air masses, and
rapidly increases beyond that. For visual light, where the extinction is
about 0.2 mag per air mass, this effect is equivalent to an air-mass error
of 0.05 at 2 = 80°. Thus, the contribution of the fefraction effect to the
apparent extinction is quite comparable to many of the high-order cor-
rection terms ordinarily included in air-mass calculations. From an
optical point of view, it may be regarded as a weak barrel-distortion of the
entire sky; in effect, the atmosphere acts like a weak fish-eye lens, with
its axis vertical.

tThis effect is an example of the differential refraction that dims a star during an
occultation by a planet; looking toward the earth's, horizon is looking at the limb of our
planet.
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3.1.4.2. Time-dependent Errors

3.1.4.2.1. INSTRUMENTAL DRIFT. Systematic errors of this type are
often associated with instrumental temperature drifts. Temperature ef-
fects in photomultipliers and in filters have already been discussed. As
was emphasized earlier, most photomultipliers have long thermal time
constants; typically, 3 or 4 hr should elapse between the beginning of
cooling and the beginning of observations. The only real solution is to
use a reliable standard source (preferably, thermostatically controlled—
see Section 2.2).

3.1.4.2.2. VariaBLE EXTINCTION. A common time-dependent prob-
lem is the slow change of the extinction coefficient itself. This usually
appears as a gradual decrease in the extinction during the night, owing to
a slow fallout of the aerosol component. The reverse effect appears during
the day, as convection caused by solar heating mixes aerosols produced
near ground level into the lowest few kilometers of the atmosphere. This
is visible as the growth in size and brightness of the solar aureole from
morning until late afternoon.” Sometimes the extinction change can be
represented as a linear function of time, at least over a few hours. In
general, the only safe policy is to observe enough extinction stars to
maintain a nearly continuous check on the course of the extinction coeffi-
cient.

A convenient method has been described by Young and Irvine.” In
this program, each measurement is weighted by 1/sec 2, so that the residu-
als have the dimensions of an extinction coefficient (i.e., magnitudes per
air mass). Thus, a simple plot of residual vs. time gives a picture of the
deviations, if any, from the mean extinction. Because data from several
nights are reduced together, any star observed more than once serves
as an extinction star, so that a good record of any variation is obtained.
Nights with variable extinction automatically receive lower weight than
those with constant extinction. Finally, one can use the time-dependent
residual plots to interpolate an improved extinction coefficient, and
correct the results. A somewhat similar procedure is used by Nikonov
and Nikonova,® and by Rufener.? ‘

A problem closely related to temporal changes in extinction is an azi-
muth dependence. One must first of all be careful to distinguish between

"A. T. Young and L. G. Young, Sky Telescope 43, 140 (1972).

™ A. T. Young and W. M. Irvine, Astron. J. 72, 945 (1967).

8V. B. Nikonov and E. K. Nikonova, Izv. Krim. Astrofiz. Obs. 9, 41 (1952).
P F. Rufener, Publ. Obs. Genéve, Ser. A No. 66 (1964).
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a genuine positional variation in extinction, and a positional variation in
instrumental response, such as might be due to magnetic or gravitational
effects. In particular, apparent gradients or asymmetries are less likely
to occur in uniform terrain than near cities or bodies of water, and are

_likely to be due to instrumental rather than atmospheric effects if there

is no obvious geographic cause near at hand. As the variable extinction
is due to aerosols, which usually’®? have scale heights less than 3 km,
more typically close to 1.3 km, even in the daytime, any real asymmetry
must be quite local—say, within 10 km of the telescope. Unless maintained
by local sources and sinks, any irregularities will simply be carried away
by the wind in a short time. For example, assume a patch of aerosol at
2-km height and a 3-m/sec wind, which is typical at this height. This
patch moves from the zenith to two air masses in 19 min, to three air
masses in 31 min, and to four air masses in 43 min. Thus, the time
required to pass across the whole useful area of sky is typically an hour
or less. One must therefore regard with suspicion reports of general
extinction gradients lasting several hours at remote locations; an in-
strumental problem seems much more likely.

Even if a time-varying extinction is due to advection of air with dif-
ferent aerosol content, not much asymmetry across the sky is to be
expected. For example, assume the rather large extinction change of
0.02 mag/air mass per hour. With the same wind model (3 m/sec ~ 10
km/hr), the horizontal separation between points at sec # = 2.0 at 2 km
height on opposite sides of the sky is only 7 km, which is traversed in
about 40 min. Thus, the difference in extinction coefficient between
these two points would be less than 0.015 mag/air mass, even if the aerosol
were all concentrated at 2-km height. As the aerosol is usually much
more concentrated toward the ground, the east-west extinction gradient
would generally be much less than 0.01 mag/air mass per (effective) scale
height, even in this rather extreme case. Thus, it is sufficiently good to
assume an extinction that is uniform over the sky, even when appreciable
variations occur with time.

At first, it seems difficult to distinguish among a changing extinction
coeflicient, an east-west asymmetry, and an instrumental drift, as all

‘three are strongly correlated with time. However, it appears possible,

at least in principle, to diagnose the problem from the shape of the
Bouguer plot. Consider first a uniform east-west gradient in the ex-

* L. Elterman, R. Wexler, and D. T. Chang, 4ppl. Opt. 8, 893 (1969).
" A. E. 5. Green, A. Deepak, and B. J. Lipofsky, Appl. Opt. 10, 1263 (1971).

o
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tinction. Assume the extinction coefficient varies linearly with horizontal
distance; then, since the horizontal displacement of the line of sight at
each height is proportional to tan z (in the direction of the gradient),
the apparent magnitude of a star is '

m= 1;10 + (4, + A4, tan 2) sec ¥ (3.1.38)

in the flat-earth approximation. Here m, is the outside-the-atmosphere
magnitude. (This formula also assumes the star is confined ‘to the prime
vertical, i.e., it is exact only for observatories at the terrestrial equator.
However, it illustrates the phenomenon fairly well, even for moderate
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Fi1c. 7. Bouguer plots for a horizontal extinction gradient [see Eq. (3.1.38)]. Gradients
of 0.01 and 0.005 mag/air mass/scale height are shown. (a) 4, = 0.2, 4, = 0.01; (b)
Ay = 0.2, 4, = 0.005.
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F1c. 8. Bouguer plots for a time-varying extinction coeflicient [see Eq. (3.1.39)].
Variations of 0.01 and 0.005 mag/air mass/hr are shown. (a) 4, = 0.2, 4; = 0.01;
(b) 4y = 0.2, 4, = 0.005.

latitudes.) The results are shown in Fig. 7. Alternatively, suppose the
extinction coefficient varies linearly with time, but is the same all over
the sky. Then

Am = m — my == (A, + A,t) sec z. (3.1.39)

With the same assumptions as before, the hour angle  is just the zenith
distance = (see Fig. 8). Finally, an instrumental drift linear in time gives
(Fig. 9)

Am = Aysecz -+ Ayt (3.1.40)

The three alternatives may be distinguished by the shapes of their Bou-
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F1c. 9. Bouguer plots for instrumental drifts of 0.05 and 0.01 mag/hr [see Eq. (3.1.40)].
(2) 4, = 0.2, 4, = 0.05; (b) 4, = 0.2, 4, = 0.01.

guer curves, especially near the meridian. The east-west gradient gives
two branches convex toward each other, meeting at a cusp with a common
tangent. The time-dependent extinction coefficient gives two nearly
straight lines, meeting at an angle. The instrumental drift gives two
nearly parallel curves, concave toward each other, and joined by a rounded
bend.

The time-dependent curves look more familiar to observers than the
curve with asymmetry in the extinction. In particular, Fig. 8 (time-
varying extinction coefficient) closely fits Code’s!? description: “At Cape

A, D. Code, in Proc. NSF Astronom. Photoelec. Conf. (J. B. Irwin, ed.), p. 79,
Aug. 13-Sept. 1, 1953.
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Town during the winter there was almost a consistent extinction curve,
or rather, curves. On the east side of the meridian one nice straight ex-
tinction curve and on the west side another nice straight but steeper
extinction curve. You could almost count on this difference which was
of the order of a tenth of a magnitude.” (The increase of extinction at
night near the city in winter is probably due to the low-grade coal that is
burned for space heating in South Africa.)

Obviously, it is easier to distinguish among the three effects just dis-
cussed if several extinction stars, well distributed in hour angle, are used.
For example, a drifting zero point produces the same magnitude residuals
at small and large air masses, but a changing extinction coefficient affects
low-altitude data more than high ones. (However, the differences may
be obscured by other errors at large z.) Also, the simple linear changes
shown in Figs. 7-9 are eliminated if the observations are symmetrically
disposed with respect to the meridian, i.e., the least-squares value of the
extinction coefficient is just 4, in each case. In actual fact, things do not
change linearly, and observations are riot made symmetrically, so some
systematic error will result. Furthermore, other related effects may
contribute to systematic errors; for example, any north-south asymmetry
in extinction would, in general, lead to a wrong value of 4.

As is well known, the least-squares analysis of data leads to wrong
answers (i.e., systematic errors in the results) not only if there are sys-
tematic errors in the observations, but also if the mathematical model
used does not conform to the real situation. This type of error is so
important that it deserves a separate section.

3.1.5. Errors in Reduction Methods

As there are many possible errors that can be introduced by inappro-
priate methods of analysis, we shall try to cover the most general ones
first, and then treat a few specific examples of more specialized errors.

3.1.5.1. Errors in the Extinction Model. These errors may be clas-
sified as either monochromatic or wide band.

3.1.5.1.1. ViorationN oF Boucuer’s Law. The refraction effects dis-
cussed in Section 3.1.4.1.4 constitute a diminution in measured brightness
that is not included in Bouguer’s law. We hesitate to call them “ex-
tinction,” as they are not due to absorption or scattering. Because they

do not represent the removal of energy from a beam of light, but rather
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a change in the area and solid angle occupied by the beam, we have
treated them as an observational error. They do not vary with the zenith
extinction. It seems best to avoid them by keeping to small air masses.

3.1.5.1.2. Errors IN CALCULATING THE AIR Mass. For a long time,
Bemporad’s work! on the air mass, which includes curvature of the
atmosphere' and curvature of the ray path due to refraction, has been
accepted as definitive. This is true only insofar as the extinction is
proportional to the actual mass of air traversed by the ray, as is true for
Rayleigh scattering. However, large contributions to the extinction are
made by aerosols, water vapor, dnd ozone, which are by no means uni-
formly mixed. For example, in red light over half the extinction is due to
aerosols, which typically have a scale height on the order of a kilometer.%b
Thus, Bemporad’s tables (and interpolation formulas based on them,
such as Hardie’s?) must grossly overestimate the curvature corrections
for red light: the scattering material is a thinner (flatter) layer than as-
sumed, so sec z is a better approximation here. On the other hand, ozone
contributes significantly between 5000 and 7000 A, and below 13400,
but is mostly concentrated near 30-km height. Thus Bemporad’s work
tends to underestimate the cotrections to sec z in this case. Furthermore,
volcanic eruptions have occasionally deposited significant amounts of
aerosols in the stratosphere; these require an “air-mass” modification
like ozone. Lest it be supposed that these effects are minor, we must
point out that the vertical distribution of ozone'® can be inferred, on a
practical basis, from a method that depends on deviations of the ozone
extinction from a sec ¥ law.} '

In principle it would be possible to generate modified air-mass (perhaps
one should say “extinction-mass”) tables for each wavelength, given the
vertical distributions and extinction coefficients for all the important
components. Unfortunately, the reason extinction measurements are

' A. Bemporad, Zur Theorie der Extinktion des Lichtes in der Erdatmosphdre, Heidel-
berg Mitt, No. 4 (1904).

A, E. 5. Green, “The Middle Ultraviolet: Its Science and Technology,” p. 94.
Wiley, New York, 1966.

*1In fact, even Bemporad's investigation of the extinction was largely motivated by
hopes of using it to study the constitution of the atmosphere: "Es tiegt nun nahe, dass
man in dieser Beziehung noch mehr von der Extinktion erwarten kann, welche im
Zusammenhang mit dem atmosphirischen Zustand unvergleichlich grisssere Verin-

derungen als die Refraktion erleidet.” (Ref. 11, p. 1.)
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necessary in the first place is that major components like ozone and dust
are variable, so that the corrections to Bemporad’s theory are also
variable.

However, Abbot et all** have attempted to correct Bemporad's air
masses by assuming that the non-Rayleigh component of extinction is in
a very thin layer near the ground, so that it can be represented by the
simple sec z approximation.

In order to indicate the approximate size of such corrections, it suffices
to use just the leading terms in the theory, and see how much these are
affected. For instance, the air mass for an exponential spherical atmos-
phere of radius R and scale height % is very nearly!®

1/2 2 2 1/2
M(z) = (igzi) exp(RCzO: z)erfc[(kcz",f 2) ] (3.1.41)

neglecting refraction. Since the ray curvature due to refraction is only
about § of the curvature of the earth,' we can allow approximately for
refraction simply by increasing R by about §. T'o show the accuracy of this
approximation, Fig. 10 compares [M(z) - sec 2] computed from Eq.
(3.1.41) (with R = 7400 kun, and /1 = 8 km) with the corresponding values
from Bemporad (which were subsequently reproduced by Schoenberg!
and Allen'*®). For comparison, values calculated from Hardie’s® inter-
polation formula are also given. The exponential model can be made to
fit Bemporad’s results very accurately by fudging the radius of curvature
slightly; R = 8500 kin gives errors of only a few thousandths of an air
mass up to sec z = 10, although slightly better results are obtained at
small air masses with even larger values of R. Because of the excellent
fit over a wide range, the (2= 8, R = 8500) model will be used for
comparisons with ozone and aerosol models having a different vertical
distribution of extinction.

For the aerosol model, an aerosol with scale height of 1 km is assumed
to contribute 4 of the total extinction. The extinction-mass difference
between this model and the standard model is shown in Fig. 11. In this

@ C. G. Abbot, F. E. Fowle, and L. B. Aldrich, Anmn. Astrophys. Obs. Smithsonian
Inst. 4, 335 (1922).

W A, T. Young, Icarus 11, 1 (1969). See also Ref. 12, p. 147.

113, Newcomb, “A Compendium of Spherical Astronomy,” p. 199. Macmillan,.
New York, 1909. 4

e C. W, Allen, “Astrophysical Quantities,” 2nd ed., p. 122. Univ. of London,

London, 1963.
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Fic. 10. Air-mass corrections to (sec z) from Bemporad’s tables (large dots), from
Hardie’s interpolation formula (small dots), and values calculated for exponential
atmospheres with 8-km scale height and radii of 7400, 8500, and 9600 km (solid
curves).

case, the standard (Bemporad) model is in error by 0.01 air mass at
sec 2 = 2.65, and by 0.05 at sec 2 = 4.6; a 1%, systematic error is made
in the extinction if an observation in the zenith is combined with one at
sec ¥ = 3.74, owing solely to the deviation of the effective air mass from
that for pure air.

For the ozone model, it suffices to assume a thin layer at height &*
= 30 km. In this case, the air path through the ozone layer is simply
sec {, where ( is the Jocal zenith angle where the line of sight intersects
the layer (see Fig. 1 of Ref. 13). Again absorbing refraction effects into
the enlarged value for R, we have

sec { = (R 4 B*)[(R + h*)* — (Rsin 2)*]~V2 (3.1.42)
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In this case, let us assume the ozone contributes one quarter of the total
extinction, as it does near 43200, and again in the Chappuis bands near

- 25800. The deviations of this model from the standard model are also

shown in Fig. 11. The Bemporad values are in error by about the same
amount as before, but in the opposite sense.
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Fic. 11. Differences in effective air mass between the aerosol and ozone models
described in the text, and the exponential model (R = 8500, & = 8) that closely matches
Bemporad’s theory.

Because the Bemporad values are in error in opposite directions, de-
pending on whether ozone or low-level aerosols are more important,
they are a good compromise. However, comparison of Fig. 10 with Fig.
11 shows that the air masses for different wavelengths can differ from
each other by as much as the Bemporad air masses themselves differ
from sec z. The implied high precision of the tables, and of high-order
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interpolation formulae such as Hardie’s is therefore largely illusory.!
The problem is not alleviated by going from sea level to high-altitude
observatories, because the ozone (being almost entirely contained above
the stratosphere) becomes relatively more important as the Rayleigh and
dust contributions diminish.

It does not seem practical to devise wavelength-dependent air-mass
tables, as these would depend on both the (unknown) amounts and ver-
tical distributions of the variable components. The only way to avoid
systematic errors is to stay in the region where the terms depending on
the vertical distributions remain unimportant. This means keeping to
air masses less than about 2.3 if the wavelength variations in (M — 1)
are to be kept below 1%, (see Fig. 11). By sec ¥ = 4, the wavelength-
dependent differences in (M — 1) exceed 5%, which corresponds to a
systematic error of at least 0.01 mag in reducing ¥ to outside the atmos-
phere, and even larger errors at shorter wavelengths. This may partly
account for the large systematic differences between different observers’
absolute-energy calibrations of stars in the Balmer continuum, which
practically coincides with the region where ozone absorption is important.

A further cause of systematic error is misuse of Bemporad’s air-mass
tables. It must be remembered that the argument in these tables is
apparent, not true, zenith distance. Thus, if the true zenith distance is
calculated from the time and the coordinates of star and observer, the
refraction should be added before entering the tables. Figure 12a shows
the air-mass error committed by using the true zenith distance, instead
of the refracted zenith distance, as the argument in Bemporad’s tables.
The error reaches 0.01 at about three and a half air masses.t

However, in computer work it is often convenient to use the true zenith
distance. In this case the correction (sec s — air mass) has the form

T It is clear that, in spite of subsequent opinions to the contrary, Bemporad regarded
his work as anything but definitive. In the introduction to his paper, he says: “Ich
brauche kaum zu betonen, dass die hier vorgeschlagene Theorie nur als eine erste
Annitherung der Auflésung eines sehr verwickelten Problems anzusehen ist.”” He was
also aware of the aerosol problem. After mentioning the then-current idea that poor
transparency of the lower atmosphere was an abnormal condition, he says: “Obwohl
wir nicht ganz dieser Meinung sind und lieber eine geringere Durchlissigkeit der unteren
Schichten fast als normal ansehen méchten, so werden wir doch in der allgemeinen
Entwicklung der Theorie die Hypothese der Konstanz des spezifischen Absorptions-
vermdgens beibehalten, aber nur in dem Sinne, dass dies eine erste Annéherung fir
die Auflssung des Problems bildet.” (Ref. 11, pp. 1 and 4, respectively.)

1 Bemporad’s corrections for temperature and pressure are often overlooked also,
though they can readily exceed 1% of the air mass.
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Fic. 12. (a) Error caused by using true instead of apparent zenith distance as argu-
ment in Bemporad’s tables, as a function of sec zy,.; (b) Points: difference between
(sec yrye) and actual air mass from Bemporad’s tables, as a function of sec 2yy,q. (The
apparent zenith distance, including refraction, is used as argument to the tables.) The
continuous curve is Eq. (3.1.43) in the text. Note that both the abscissa and the ordi-
nate differ from those of Fig. 10.
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shown in Fig. 12b, where Bemporad’s values are plotted against the
secant of the true zenith distance. Up to sec @y, = 4, these values are
well represented by the very simple formula

M(#1ne) = sec 5[1 — 0.0012(sec? z — 1)], (3.1.43)

which has been used by Young and Irvine™ for this purpose. [The same
form has also been used by Rufener? for M(z,,,).] From the foregoing
discussion, it should be clear that air masses greater than 4 should be
avoided because of large random and systematic errors; therefore this
formula is good enough for all practical work.’

3.1.5.1.3. ProBrEms ConnNecTED WITH CoLors, Two classes of er-
rors are included here: (a) those associated with the measurement and
reduction of colors instead of magnitudes, and (b) those due to bandwidth
effects, which appear as color-dependent terms in the extinction.

It is often claimed that there are advantages to forming colors from the
raw observations, and treating these as the observed quantities in the
extinction corrections, instead of reducing magnitudes to outside the
atmosphere and then forming colors from their differences. Some of the
supposed advantages are fictitious; but some real advantages have escaped
notice.

In the first place, it is essential that the observed quantities really be
colors. This requires all the different wavelengths to be measured through
the same air mass. This is most easily done if simultaneous observations
are made with a multichannel instrument, which has the further ad-
vantage that most of the scintillation noise, which is strongly correlated
between bands when small zenith angles and large apertures are used,
cancels out. It should thus be possible to measure colors to a thousandth
of a magnitude, for bright stars. However, the color zero-points then

b 7. D. Forbes, Phil. Trans. 132, 225 (1842).

* Abbot et al.}*® (p. 344) arrived at the same conclusion: “On account of the un-
certainty which attends the theory of the determination of air masses, when zenith
distances exceeding 75° are in question, we conceive that it will be better to confine
our observations... to the range of air masses less than 4...” Similarly, Forbes (Ref. 14b,
p. 235) remarks that “...we would do well to avoid much use of observations near the
horizon... any law of extinction will, therefore, be better determined from multiplied
observations at elevations above 15°, than by those nearer the horizon...” Both of these
authors stress the importance of adhering to the region where the simple sec zapproxima-
tion is adequate.
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depend on gain drifts between different photomultipliers, and must be
controlled by using a broad-band standard source with good spectral
stability (not a phosphor source). If a single photomultiplier is used with
filters, one must observe in forward and then in backward sequence
through the filters, and then interpolate all colors to a common time. This
is inconvenient if more than 3 or 4 filters are used; furthermore, some
efficiency is lost if gain changes are required in going from one filter to
another, because all changes must be made twice. If many filters are
used, linear interpolation between two deflections several minutes apart
may not be adequate at the large air masses.

In UBV photometry, it is customary to measure in the order (B, V, U,
red leak) to keep most gain changes unidirectional. The B and U deflec-
tions typically differ by about 1 min in time. Figure 13 shows the air-
mass change in 1 min for several common situations, as a function of
air mass. At moderate air masses, the change amounts to several hun-
dredths of an air mass. This is already an important effect, but we know

0.10 T T T

(b}
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of one instance in which very faint objects were observed, so that long
integrations were necessary, together with equally long sky measurements.
In this case, 10 min or more were spent on each filter, and the systematic
errors that resulted from reducing “colors” instead of magnitudes some-
times exceeded a tenth of a magnitude! The same problem arises in
spectrum scanning, where 10-20 min may be required for a complete
scan. In such cases, it is essential to use the correct air mass for each
color, as was done in the program described by Young and Irvine.™
Of course, beyond about sec & = 3, even simultaneous observations in
different colors can have significantly different air masses (see Fig. 11).

One supposed advantage of using colors instead of magnitudes is that
the instrumental color zero points are more stable than the magnitude
zero. However, in fact, the colors are typically’® more stable by a factor
of only 2 or 3, and the variations should in any case be measured and
removed with a reliable standard source. Thus this argument works
only for uncontrolled, unstable instruments. If the instrument is stable,
individual magnitudes should be more precise than their differences
(colors) by a factor of 212, except in the important case of simultaneous
measurements where cancellation of scintillation noise is possible.

Another argument is that the variations in extinction are strongly cor-
related in neighboring colors, so that the extinction coefficients for colors
vary less than for magnitudes. Granted; but so what? If, say, an ultra-
violet magnitude is needed, the sum of the small errors in V, B — V,
and U — B is the same as the original error in the U magnitude; alterna-
tively, if colors are wanted, the (correlated) magnitude errors are just as
diminished by differencing after extinction correction as before, provided
that the correction is accurate. Thus the results should be the same
whether the data are reduced as magnitudes or as colors.

The choice whether to reduce magnitudes or colors therefore depends
primarily on (1) the quality and type of the instrumentation, and (2) the
way in which observations in different colors are disposed in time—
sequentially, symmetrically, or simultaneously. Good results can be
obtained only if the reduction program is appropriate to the data at hand.

The second class of color problems has to do with bandwidth effects.
Within each filter passband, some wavelengths suffer more extinction
than others. Thus some stars (generally, bluer ones) suffer more ex-
tinction than others. Furthermore, at greater air masses the more suscep-

“tible rays are more completely removed, so that the incremental ex-

15 A, T. Young, Mon. Notices Roy. Astron. Soc. 135, 175 (1967).
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tinction per air mass becomes less and less (the Forbes'®” effect); in modern
terms, this is a curve-of-growth phenomenon. These problems were
treated theoretically by King'® twenty years ago, but the theory is generally
ignored. Instead, it is customary to represent the extinction by a formula

like

m = my - (4, + 4,C) - M, (3.1.44)

where m may be either a magnitude or a color, C is a color, and M is the

alr mass.
To see how this is related to King’s theory,'s we rewrite King’s Eq.

(21) for the extinction as
Am = 0.543w2(,12 J-I—> — {1 + L(”Zil)_ w? — ,ZNZUZ} AM
a
77 @AM, (3.1.45)

where primes denote wavelength derivatives; the zero subscript refers
to evaluations at the effective wavelength Ag;

= sl o (3.1.46)

is the normalized (rms fractional) bandwidth defined by King’s Eq. (8);
' n= —(dIn Ald1n 2), (3.1.47)

is (minus) the logarithmic gradient of the monochromatic extinction
A() at Ay;
N = (dInI/din 2), (3.1.48)

is the logarithmic gradient of the star’s spectrum I(2)at Ay;and M = sec z
is the air mass. Thus, # and N represent the atmospheric reddening and
the color of the star, respectively. As King points out, the first term is the
color equation between monochromatic and wideband magnitudes at
2y, and can be dropped. We then have

Am = M{A[1+win(n-+1)[2] — wnd [N+ (n[2.17)4,M]} . (3.149)

Now, z? is 0.007 for B and 0.004 for V; and n is at most 4, for pure
Rayleigh scattering, so that n(n+1)/2 < 10. Thus, the second term in.

1 Tyan King, Astron. J. 57, 253 (1952).
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the first square brackets is, at most, 0.07, and usually much smaller.
[Notice that its effect is to produce a shift in the effective wavelength at
wh%ch the extinction is measured; it plays a role, with respect to the
ex.tmction, similar to that played by King’s dropped term in (12"[I),
with respect to magnitudes.] We need not drop this term, if we write

Ag* = A,[1 4 win(n + 1)/2]. (3.1.50)

We now have the problem of expressing 7 and N in terms of measurable
quantities. To do this, suppose that we have measurements in a second
band centered at 1, < 1,, but nearby 1,. (We suppose 1, < 4, for
definiteness in the choice of signs; the opposite inequality could also be
used for the derivation.)

We now approximate the required logarithmic derivatives by finite
;lifferences, a procedure that should not be far wrong if 1, is not far
rom A,: ' ‘

_ d(nJ) _ d(ogl)  log(l,/I,)  0.4(m; — my)
d(n7) ~ d(log 1) ~ Tog(Afh) ~  log(igh)
or

(3.1.51a)

N = 0.4 AXJlog(A,/4,) (3.1.51b)

in the notation of Young and Irvine;? AX is the star’s extra-atmospheric
color index. '

Similarly,
L —dind) i, (dA> _— o[ 4y — 4,
d(In 7) Ay \dd ), 4, ( Ao — 4 )
. /10 (Al - AO) _ 2'0 44 ’
G-m A w4 8

[Notice that in both AX and 44 the shorter-wavelength item comes first,
so that red stars have positive (4X) colors and N, and a reddening
atmosphere has positive 44 and .]

Now we use these approximations in Eq. (3.1.49):

dm = A{{Ao* _ w44 [ 044X A A4

(%o — M)4, L Tog(Zef2y) T~ 2.17(29 — 414, 'A"M}}

= M4 —w e 7) [log(oij/z,) ]

%o log(AgfA,
xAA[AX+~O_%—-WgA(O—iT)I)_(AA)M”. (153
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Let us call
04222,

(o — M) log(RofAy)

We can simplify these last two equations by converting log,o(4o/2,) to
In(2/4;) and expanding, using the assumption that (A, — ;) < A:
1og(£) — (logy €) 1n(i) = 0.434 ln[l + M]

Ay A A

1

w. (3.1.54)

/10—)“1

~ 0.434[ T

} ~ 0.434{——’1" — A ] (3.1.55)
Ao

Then, to this degree of approximation,

_ 04w? Ao B ot Ao 2
W~ a4 (/10~/11> ~ 1.086 (Ao—ﬂl ) (3:1:36)

and Eq. (3.1.53) becomes
dm = M{A* — W - dA[dX + M 4A4/2]}. (3.1.57)

As a practical matter, we must employ the approximation 44 ~ 44*
= A,* — A,*; if we drop the subscripts and superscripts, this is Eq.
(4) of Young and Irvine.” Comparison with the commonly used Eq.
(3.1.44) shows that (setting C = AX) the latter ignores both the Forbes
effect [represented by the last term in Eq. (3.1.57)] and variations in
atmospheric reddening (i.e., W - 44 is treated as a constant 4,).

There have been arguments as to whether the color C in Eq. (3.1.44)
should be the observed or the extra-atmospheric color of the star; the
foregoing linear theory shows that the mean of these should be used, to
represent the Forbes effect properly. Figure 14 shows the results of a
numerical experiment to test this idea. (The figure is similar to Fig. 1
of Hardie.'”) The energy distributions of a number of stars were multi-
plied by typical instrumental response functions for the B and V7 bands,
both without any atmospheric extinction, and with various amounts of
extinction corresponding to 1.0, 1.5, ..., 5.0 air masses for a standard
atmospheric extinction model.’® The integrated responses were converted
to magnitudes, and the total extinction computed as the magnitude
difference between the value for M air masses and the extra-atmospheric
value. The effective extinction coefficient (the ordinate in Fig. 14) was
then computed as the ratio of the total extinction to the total air mass M.
Thus, for each star there are nine extinction values, which are plotted
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Fic. 14. Effective extinction coefficient (mag/air mass) found from numerical in-
tegrations, as a function of (a) extra-atmospheric color of star; (c) observed color; and
(b) mean color (see text for explanation).

as a function of the instrumental color outside the atmosphere (a); the
apparent color inside the atmosphere, at M air masses (c); and the mean
of these two colors (b). In the latter two cases, successive ‘“‘observations”
of each star at different air masses are joined by a straight line. The
mean color gives the best results, both in terms of minimum dispersion
about the mean relation and also in the sense that it gives each star an
atmospheric “reddening line” most nearly parallel to the general relation
for all stars together, which means that the extrapolated extra-atmospheric
value for a star is independent of the air mass at which it was observed.
Notice, however, that there is some intrinsic spread between different
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stars; i.e., two stars can have the same color but different extinction
coefficients. This is due to two factors: (1) higher-order terms, omitted
from the theory; and (2) an imperfect correlation between (b — y)
color and the spectral gradients at the effective wavelengths of the bands,
owing to blanketing, rotation, microturbulence, and other effects. (Similar
results were found for other colors and magnitudes.)

The Forbes effect is appreciable, especially in the ultraviolet magnitude.
Figure 15 shows extinction curves from the numerical integrations,
together with Hardie’s observations.” Most of the curvature of the
extinction lines occurs at small air masses, which explains why Hardie’s
data do not show the effect between 2 and 6 air masses. This is due to
the increasing monochromaticity at large air masses, after the shorter

4.0 T T T T T
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o
o

k=0.38

MAGNITUDES

~
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.0 -
8 k=0.71

9.0 L i ! 1 t
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1 1 1
2 3 4 5 [

) AlR MASS
Fi1e. 15. (a) Extinction curves (dashed) calculated from numerical integrations for
a B3 star. The solid straight lines are drawn to fit the points between 2 and 5 air masses;
(b) Hardie’s observed extinction curves at low altitudes for z* Ori.

17 R. H. Hardie, in “Spectral Classification and Multicolour Photometry,” p. 243.
IAU Symp. No. 24 held in Saltsisbaden, Sweden, 17-21 August 1964. Academic Press,
New York, 1966.
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wavelengths have been almost completely removed. However, as can be
seen from the figure, the straight line fit to the 2-5 air-mass region gives
systematic errors in the extrapolated extra-atmospheric magnitudes of
0.03 mag in B, and about 0.25 mag in U. A straight line passed through
the calculated points at 2.0 and 5.0 air masses misses the point at M = 3.5
by only 0.008 mag in B and 0.034 mag in U, which corresponds to air-
mass errors of 0.02 and 0.05 in B and U, respectively. The rms residual
from a linear least-squares fit would be less than a hundredth of a mag-
nitude for both colors in this region. Thus, although a straight line is
an excellent representation of the large-air-mass data, it involves large
errors in extrapolating to zero air mass.

With respect to the parameters I¥ and w?, we might add that for B and
V, 2o/42 is about 5 or 6; then W ~ 30w?. King gives %? = 0.007 for B
and 0.004 for V, based on rather poor values of the response functions;
the problem is further complicated by the Chappuis bands of ozone,
which greatly reduce the effective value of # across the ¥ band. Anyway,
one might expect W = 0.21 or so for B, and something less than 0.12 for
V. Our Agassiz Station reductions give Wy = 0.26 fairly consistently,
and Wy =~ 0.03; the numerically integrated values were reduced, using
a program based on this theory,” and gave Wy = 0.21, Wy = 0.026.
(One effect of the ozone is to make the extinction larger in V, which
reduces the apparent (B — V) extinction gradient below its true value
across the B band, so it is not surprising that W comes out a bit larger
than expected.)

In common practice, the parameter 4, in Eq. (3.1.44) is generally
assumed to be either a free parameter that is solved for separately on each
night, or a fixed constant whose value is found once for all time. However,
the theory [Eq. (3.1.57)] shows that it should depend on the reddening
power of the atmosphere AA. If the parameter 4, is free, it can soak
up and conceal various systematic errors. On the other hand, if it is’
fixed, it introduces systematic errors in the results whenever the at-
mospheric extinction law changes (due to seasonal or random effects
such as volcanic eruptions®s). If the variable part of the extinction were
neutral, 44 would be constant; but it is not, as the variable color of the
setting sun vividly demonstrates. Only by making the mathematical
representation of extinction conform to the physical situation can we
hope to obtain accurate results.

A computer program that does represent the color terms according to

18 G. de Vaucouleurs, Publ. Astron. Soc. Pacific 77, 5 (1965).
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this theory has been used and described by Young and Irvine.”ﬁ The
added complexity of using a correct representation of the physics of
extinction is so small, compared to the capabilities of modern computers,
that simplicity is no longer an acceptable excuse for inaccurate results.
One must bear in mind that an incorrectly formulated least-squares
program will absorb systematic errors into whatever adjustable parameters
it has available. Thus, particularly if there are only a few o.bservatlons
for each disposable parameter, systematically wrong values \.mlll be found
that may fit the data quite well. Small residuals (high precision) do not
mean small errors (high accuracy).

3.1.5.2. Errors Due to Misuse of Least Squares. It should be remem-
bered that the expectation values of the parameters in a least—sqtlares
solution are their true values only if certain assumptions are satisfied.
In particular, the etrors in the observations are suppose.d to be norlrllally
distributed, with mean zero. If the resulting estimate is to be. efficient,
the equations of condition must be weighted, so that the residuals are
all drawn from the same parent population (i.c., they must a}ll have _the
same probable error). These conditions are often violated in pr.actlce.

First of all, the observed quantities are intensities, not }nagmtudes.
In the presence of any experimental error, the mean i'ntellslty does not
correspond to the mean magnitude, because the logarlth'm of th(? mean
of a random variable is not equal to the mean of its logarithm. It is 'clear
from the law of conservation of energy that scintillation can rec.iistrxb.ute
the energy in the shadow pattern, but cannot alter the mean intensity.
In fact, it is well known that scintillation causes the logarithm .of th.e
intensity (i.e., magnitudes) to be normally distributed, and that in this
case the difference in the means is

log{I> — (log Iy = o?/2, (3.1.58)

where the angular brackets denote averaging, and 02. is the variance of
log I. Natural logarithms are close enough to magmtudes t.hat we can
also consider ¢® to be the variance of the magnitude estimates. For
example, if o, = 0.1 mag, Eq. (3,1.58) tells us that the mean I'nagmtu‘de
differs from the true magnitude of the star by 0.005 mag, which begins
to be important. This sets a practical lower limit to the duration of p-ho-
tometric observations. For example, if we wish to use a 40-cm (16-in.)
telescope at 3 air masses, Table I of Part 2 shows that abomf a 10-sec
integration is required to achieve rms errors of 0.01 mag on bright stars,

&



162 3. OBSERVATIONAL TECHNIQUE AND DATA REDUCTION

which means significant systematic errors will appear if integrations
shorter than 0.1 sec are used.

At the other extreme, the errors on faint stars are dominated by photon
noise and sky noise, which may easily exceed 0.1 mag. Furthermore,
these errors are not distributed normally (or even symmetrically) in
magnitude, which leads to further systematic errors. It appears that the
photometrist’s only hope in such cases is to observe faint stars only
near the meridian, so that a long enough integration can be achieved to
reduce the random (and consequent systematic) errors to an acceptable
level, while keeping the air mass practically constant. Otherwise, the
whole quasi-linear system of equations using magnitudes must be replaced
by a system of (exponential!) equations in terms of intensities. Without
such precautions, the mean magnitudes will depart more and more from
a Pogson scale at the faint end. For example, adding 309, to the intensity
decreases its magnitude by 0.29, but subtracting 309, increases the mag-
nitude by 0.39; the mean intensity is correct, but the mean magnitude
is 0.05 too faint. Again, the systematic error rises with the square of the
noise level.

Finally, there is the question of weighting the observations. Because
of the rapid increase in errors with sec 2, low-altitude observations have
very low weight. For example, if the errors increase like (sec 2)?, the
weight of an observation is proportional to (sec )~%. Thus, at two air
masses, we have only 0.06 of the weight of a zenith star; at three, the
weight is down to 0.012. These observations provide information about
the extinction, but are worthless for determining the actual brightness
of a star. Even at & = 45°, the weight is down by a factor of four. Clearly,
it is essential that a realistic weighting system be used, and that all pro-
gram stars be observed as near the meridian as possible.

3.1.5.3. Errors Due to “Standard” Stars. Hardie®? has advocated the
use of standard stars, whose extra-atmospheric values on the instrumental
system are known, for quick measurements of the extinction. This works
beautifully if these values are accurately known. Both the extinction and
the instrumental magnitudes are determined simultaneously from many
nights’ data in the method of Young and Irvine,” and this is also satis-
factory. A similar method has been used by Rufener,® by Weaver,?20
and others.

19 R. H. Hardie, Astrophys. J. 130, 663 (1959).
20 H. F. Weaver, Astrophys. J. 116, 612 (1952).
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However, some observers have relied on the published magnitudes of
UBYV standard stars, rather than determining good instrumental values
themselves. They then solve for the transformation coefficients between
instrumental and standard systems, as well as for the extinction coeffi-
cients. Unfortunately, the UBV ‘‘standards” contain mean errors per
star on the order of 0.02 mag; furthermore, the usual linear transforma-
tions are imperfect, especially in the ultraviolet, and may contribute
similar errors of a systematic nature. If a large number of standard stars
were observed, their errors should average out. (For example, Johnson
and Harris® say that “it is best. . . to use at least 20 stars of all types... .”)
However, the standard stars are usually regarded as a “shortcut” to
extinction; we have seen as few as four or five stars used altogether. In
such cases, the accidental errors in the published values for the particular
stars used become appreciable systematic errors in the extinction and the
transformation coefficients, and consequently in the final results. Recently,
Moreno® has shown that the errors introduced by incorrect extinction
coefficients are not transformed away by adjusting the transformation
coefficients. Here again is a situation in which the least-squares process
absorbs systematic effects, producing small internal but large external
errors.

3.1.6. Actual Error Laws

From the foregoing discussion, it is clear that unavoidable systematic
errors that depend on variable atmospheric conditions (seeing; vertical
distribution of absorbers) become important in the neighborhood of
3 or 4 air masses, so that larger air masses should be avoided in work of
the best quality. Within this range, it is still important to know how the
random errors actually vary with air mass; not only to plan observations
for maximum efficiency, but also to assign realistic weights in reducing
the data. '

Very few observers have bothered to investigate their errors as a func-
tion of air mass. Rufener® has given a very thorough discussion of errors
in the Geneva photometry. His errors due to scintillation (from his
Fig. 9) are replotted in log-log coordinates in Fig. 16. The lines, which
have been drawn by eye to fit these data, have very nearly slope 2; that is,
the scintillation errors grow like (sec )2, as expected. In addition, he
finds a root mean square fixed error of about 0.006 mag, due to instru-
mental uncertainties (mainly due to nonlinearity, and gain changes).
These appear to be the principal sources of error in determining the
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Fic. 16. Scintillation noise at Geneva, in units of Ad/d, on nights of strong (open
circles and upper curve) and weak (filled circles and lower curve) scintillation [taken
from Fig. 9 of F. Rufener, Publ. Obs. Geneve, Ser. A. No. 66 (1964)].

extinction at Geneva, apart from time variations of the extinction coeffi-
cient, which are carefully monitored. Evidently the scintillation noise
dominates.

Another example of careful work is given by Stock,?* who also found
the errors to increase with the square of the airmass, and derived from

L J. Stock, Vistas Astron. 11, 127 (1968).
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this the condition M, = 2.1 [as pointed out in the discussion following
Eq. (3.1.8)].

We had also come to this conclusion at about the same time;?? a slide
of Fig. 1 was shown at the December, 1966, AAS meeting. Immediately
afterward, Hardie told us that he had found a contrary result experi-
mentally: the extinction was most precisely determined for very large
values of M,, rather than showing an optimum near 2 or 3 air masses.
We now believe this is due to Hardie’s method of determining the
extinction by using the published values of UBV for standard stars. For,
in this case, the (constant) errors in the standards themselves are dominant
at small-to-moderate air masses, so that p = 0 (cf., Fig. 1). The effective
error law would then consist of this large constant term, in addition to the
usual (sec 2)? term for scintillation. The weighting scheme used in
determining the extinction should reflect the effect of this constant error
term; however, observations of bright program stars should still receive
the (sec z)* weights appropriate to scintillation noise alone.

As a final example, Fig. 17 shows estimates of the error law from data
taken at Agassiz Station and reduced with the program described previ-
ously.” The original data were taken in pairs of 20-sec deflections; but
because the efficiency of reading the chart paper is only® about 25%,, the
scintillation noise should be that for a 10-sec deflection, which is 0.001
mag at the zenith for a 60-cm (24-in.) telescope (see Part 2, Table I).
The root mean square residual, expressed in magnitudes, was computed
for data grouped into four intervals of air mass: 1.0-1.2, 1.2-1.5, 1.5-2.0,
and 2.0-3.0; only stars observed five or more times were used, so that
errors in their instrumental magnitudes should not strongly affect the
results. Also, only nights with no marked systematic run of residuals were
used. The December, 1960, data show rather large errors, roughly propor-

“tional to air mass. This suggests that small variations in the extinction

coefficient with time were the main source of error, a conclusion supported
by considerable systematic runs in the residuals on about half the nights
of that month. On the other hand, the March 1961 data are much better,
although they are still far above the level of pure scintillation noise.
A constant error of about 0.007 mag seems to dominate these observations
at small air masses.

As a practical matter, the above studies suggest that, under good
conditions, the error law can be approximately represented by a com-
bination of constant and scintillation errors. Of course, the scintillation

22 A. T. Young, Astron. J. 72, 328 (1967).
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008y T UL S L ' numerically or graphically. In the simplest case, Eq. (3.1.4) tells us that
P . variance in the extinction coeflicient derived from two observations at
0.041- 6 s ~ - E ’ M, and M, is just
L // | n _ 1 k 04% = [o*(M,) + o*(M,)]/(M, — M,)2. (3.1.59)
// ‘ - This suggests a simple graphical method of finding the optimum M,: if
0.02}- // - = . o we pick a value of M; and plot the function ¢2(M,) as a function of
2

(M, — M,)?, then the tangent to this curve from the point [ —o*(M,), M,]
has the least slope (o 42) of all lines from that point to the curve (see Fig.
sec z
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Fie. 17. rms errors in I/ magnitude vs. air mass, for two periods at Agassiz Station.
The data were taken with the 60-cm (24-in.) Clark reflector. (a) December, 1960. The
errors are large, and increase roughly proportionally to the air mass, as indicated by
the dashed line. (b) March 1961. The errors are smaller, and seem to be composed of a
constant component (~0.007) plus scintillation (shown by the dashed line); the heavy
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curve is the combination of these terms. (The “error bars’ represent 50%, confidence
intervals.) The number of observations included in each point is indicated beside the

“error bar.”
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component may be negligible for large apertures (say, over 150 cm); but | tsec 2 - 112

most photometry is done with smaller instruments. However, regardless -

of the shape of the random'error law, 1tS' dependence OfL alf Inass can (a) Error law (solid curve) taken from curve of Fig. 17b. Dashed line: determination

be found from the observations. Then, given the actual error law, how ! of optimum M,. Dotted line: determination of half-optimum M,. (b) Same scintillation

can we find the optimum air mass for extinction measurement ? noise as (a), but with constant errors of 0.015 and 0.020 mag. (The dashed line picks
Let the random error law be some function o(M), which may be given : out M, ~ 6 for the former.)

F1c. 18. Graphical determination of optimum air mass for extinction determination.
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18). Therefore the value of M, at the point of tangency is the optimum
value. Furthermore, any chord drawn from the specified point intersects
the curve in two points, such that their values of M, give equally good
determinations of the extinction coefficient (apart from systematic errors,
of course).

For example, Fig. 18a shows the error law found for the March, 1961,
observations of Fig. 17. If we take M, = 1, the zenith variance is about
5Xx10-% (mag)®. The- (dashed) tangent to the curve from the point —o?
= —5x10-% on the vertical axis, meets the curve at about M, = 4.1,
If we draw a line from the same point, but with twice the slope (i.e.,
twice the value of ¢,2), we find it meets the curve at M, =~ 2.4; thus
the extinction is determined with half the optimum weight, or 22 times
the minimum error, if we use M, = 2.4.

What would be the situation if we had used the UBV standard mag-
nitudes, linearly transformed to the instrumental system? In fact, the
transformation between ¥ and the instrumental magnitude left a root
mean square residual of 0.015 mag per star, which is clearly much larger
than the internal errors of the March photometry (especially considering
that the standard stars were observed an average of 4 times apiece in
this run). Whether this 0.015-mag error is due to the errors in the
tabulated values, or to transformation errors, is immaterial for our
present purposes; in either case, it acts like a constant error if the pub-
lished values are used to determine the extinction. The effect of in-
creasing the constant error from 0.007 to 0.015 mag is shown by Fig.

18b; the optimum air mass M, has increased to about 6. In general, -

the situation will be still worse, as the March observations use only the
brightest and best-determined of the UBV standards. If the constant
error is raised to the more typical 0.02 mag for run-of-the-mill UBV
standards, J, becomes very large indeed—in agreement with Hardie’s
statement, and in spite of the rapid increase in scintillation with air mass.

In case we do not spend equal amounts of time at the high and low air
masses, Eq. (3.1.12) shows us how to modify the graph. If we multiply’
through by f, we obtain

2 1 f 2 2
fout = T [(1 Ly ) + U(Mz)}. (3.1.60)

Notice that the term in o*(M,) contains a factor [ JI(L = f)], which is
the ratio of the observing time spent at M, to that spent at M,. For
example, if we observe a star at M,, both rising and setting, as well as
at M,, on the meridian, the factor is 2. Then to find the optimum M,,
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we must draw the tangent from the point —202(M,) instead of just
—02(M,). In general, we simply move the piv'ot po_int down by a factor
equal to the ratio of the observing times. As is e?/ldel‘lt from the ‘shape
of the curves in Fig. 18, increasing this ratio-also increases the optimum
value of M,. (This can also be seen from the shapes of the contours in

Figs. 3 and 4.)

3.1.7. How Much Time to Spend on Extinction

3.1.7.1. General Principles. Because the errors in the extinction ob-
servations propagate through the extinction corrections into the final
results, enough effort must be spent in determining the extinction to
guarantee adequate precision and accuracy. However, how much. is
“enough”? The answer obviously depends on the type of work being
done. .
In general, the variance in a magnitude or color, after correction for
extinction, will be
6% = olys + oy + 054 (3.1.61)

where o%; is the variance due to observational errors .of the program staz
itself, o2 is the variance propagated from extinction errors, an.d o,
is the zero-point variance. If each night is reduced se}?al‘ately, or if the
zero point is allowed to be a free parameter for (?ach night, thi first two
terms on the right correspond roughly to the “mtern:f\l error,” and the
whole expression is the “external error.” The separation of Oext an'd 0y,
is somewhat artificial, as they usually depend on the same observations,
so these errors are not always independent, as assumed in Eq. (3.1.61).

In order to keep o3, small, we usually observe the program star near
its minimum zenith distance M*, and reobserve it several times; then

0dns = o*(M*)/n, (3.1.62)

if we have 1 observations altogether. In good conditions, small values of
n (say 2 or 3) suffice to reduce o to a few thousandths of a mag-
nitude.

The contribution of the extinction errors is more complicated to assess,’
because extinction stars are usually standard (zero-point) stars as well.
Thus we must consider the techniques used to collect and reduce the
data, as well as the ultimate use to which the results are put.
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3.1.7.2. Absolgte Photometry. If we are doing absolute photometry
(comparing a star to a standard lamp), then

Oext = M* - 045 (3.1.63)

and as M* must exceed unity, the error o, in the extinction coefficient
appears with full force. It is not always realized that this same large error
appears whenever we assume that some instrumental zero point remains
constant from night to night, as is often done in the case of colors.47%.20
The assumption of a fixed zero point (which can be ensured only by using
a reliable standard source) greatly strengthens the precision of extinction
determination when data from different nights are combined; however,
if it is not strictly true, it can introduce considerable systematic errors.
Thus, we achieve precision at the risk of accuracy.

3.1.7.3. Relative Photometry

3.1.7.3.1. PrincrpLEs. To avoid this problem, it is common practice
to let the nightly zero points be free parameters. The determination of
the zero point then depends on observations of certain (instrumental)
standard stars, It is often claimed that this reduces the problem to
relative photometry, so that the extinction errors cancel out. This im-
plication is only partially true, however; if either the program or the
standard stars are distributed over the sky, there will be an error of the
form

Ooxt = (Mya — M¥) - 0% = 03* - 0.%, (3.1.64)

where the rms air-mass difference oj; can hardly be less than several
tenths.” Thus, compared to absolute photometry, the extinction error
0exy in relative photometry is reduced only by a factor (Mg —M*) e/ M*,
which is usually rather modest (say about ), and which may well be
compensated by the increased uncertainty o, in the extinction itself,
owing to the sparser distribution of observational degrees of freedom
over the set of unknown parameters. Furthermore, it is clear that errors
in the deduced nightly zero points appear in the results as systematic
errors. Once again, the importance of matching the mathematical model
to the physical situation is evident.

 Note that this error results from the variance in air mass, even if the mean air masses
of extinction and program stars are the same.
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3.1.7.3.2. DrrrereNTIAL PHOTOMETRY. Of the two factors on the
right of Eq. (3.1.64), 0,® can be found from the slope of a straight line
in a diagram such as Fig: 18. The other factor (air-mass variance) deserves
further attention. As is well known, it can be made very small by making
all observations at nearly the same air mass, usually that of the Pole.
A few reference stars near the Pole can then be used to measure and
remove temporal changes in both extinction and instrumental zero point.

This practice is now less popular than it once was. Some telescopes
are difficult (or even impossible) to use near the Pole. At high latitudes,

‘the polar-altitude condition restricts observations to a small range of

declination; at low latitudes, the polar altitude is so low that the observa-
tional errors (both oy, and o,) are offensively large. If some other ref-
erence altitude is used, the reference stars traverse an appreciable range
of air mass during a night, so the extinction error becomes appreciable
once again.

Another case in which the air-mass factor is very small is differential
photometry of variable stars. Since a comparison star bright enough to
be dominated by scintillation noise can usually be found within one or
two tenths of a degree of the variable, the air-mass difference can usually
be kept below 0.01, up to 2 or 3 air masses. Thus the extinction coefficient
needs to be known only to about 0.1 mag/air mass in order to keep
magnitude errors below 0.001 mag. However, color-dependent terms in
the extinction can cause much larger errors, especially during eclipses
of binaries having dissimilar components.

These cases, in which the o, term in Eq. (3.1.61) can be made small,
require us to look at the g, term to determine the proper balance between
program and reference stars. If both are bright enough that photon noise
is negligible, 6,2 =~ 0%(M)[ngwr, Where e is the number of reference-star
observations that can be combined. For example, if the extinction coeffi-
cient and the jnstrumental zero point are constant, widely separated
reference obsérvations can be combined; but if there are variations, we
may have to compare each program-star deflection with just one adjacent
reference observation. In the former (constant) case, we should observe
the reference star the same number of times as each (constant) program
star. For a variable star, each observation provides an independent point
on the light curve, so n, = 1 will suffice, unless we are concerned about
the systematic accuracy of placing the entire light curve on a standard
system. In most cases, however, we have to worry about instrumental
or extinction variations on the order of 0.01 mag/hr. Then ¢, ~ 0.01 4z,
where At is the time difference (in hours) between reference observations.
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This is generally larger than oy, if 4¢ exceeds a few tenths of an hour.
Thus, differential photometry usually requires several reference observa-
tions per hour, to achieve maximum precision.

If photon noise is important, the fainter star should receive most of the
observing time. An argument like the derivation of Eq. (3.1.15) shows
that, if the comparison star receives a fraction F of the total observing
time, the program star is best determined if the ratio of the times devoted
to the two stars is also the ratio of their standard errors for unit time,
o, and oy, respectively:

F(1 — F) = a,/o, (3.1.65)

or

F = o,/(0, + o). (3.1.66)

[Here, ¢ and p denote “‘comparison” and “program” stars, respectively,
and we have set o2, = op*(1 — F)7, and 0,2 = ¢,2F-1]

In the case of pure photon noise, Eq. (3.1.65) is equal to 100-2mc-mp) .
if the comparison star is so bright that photon noise is negligible, m,
should be replaced by the magnitude at which photon noise equals scin-
tillation noise. Thus, a 15th mag program star should be. observed ten
times as long (or ten times as often, if each observation is of fixed length)
as a 10th mag comparison star, to achieve the best measurement of their
magnitude difference in a given amount of telescope time.

3.1.7.3.3. ArL-Sky Puotomerry. Now let us consider observations
over a considerable range of air mass, so that % is appreciable. We must

evaluate the air-mass variance factor in Eq. (3.1.64) to calculate this’

extinction error. Generally, each extinction star is observed at both large
and small air mass, but each program star is observed only at its minimum
air mass M#*. Also, the zero-point standard stars are usually used as
extinction stars; this avoids the need for separate zero-point standards.
Thus, the reference air mass M4 in Eq. (3.1.64) is really i, the mean
air mass of the extinction stars. This should be calculated using the
appropriate (air-mass-dependent) weights, 1/0%(M), for lower and upper
air masses:

77 A=NM, , M, [ (1~ f o1

T =[Sty =+ <ty | ooty + ey |

¥ (M,)(1 — )M, + o*(M,)fM, :
07 Ry T 7 A VA - (3.167)

Thus My, = (M, + M,)/2 only if o(M) = constant, and f = §. If we
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can assume o(M) ~ M», Eq. (3.1.67) can be written as

g ] 2; —
Wy = 2| PP ] — 110, — 2 1)), (B168)

where
M, = M,/M, (3.1.69)

is the ratio of the two air masses, and
fe=fI(1 = 1) (3.1.70)

is the corresponding ratio of observing times. .
For example, the common case of M, = 1, f= 3}, and p = 2 gives
M, =~ 2.2 for optimum results; then My =11.If p =1 and M, = 4,
we have M., = 1.33. Evidently the higher weight of one zenith observa-
tion generally overcomes the greater number ( f;) of large-air-mass data,
giving a mean air mass near /M, . .
On the other hand, even if program stars are observed only at culmina-
tion, many of them will be at considerably larger air masses. Their mean
air mass can be roughly estimated by the following argument: suppose
that program stars are uniformly distributed over the sky, and that they
are observed only at culmination. Let us further suppose that only those
stars culminating at M* < M, are used. The uniform distribution means
that the number of stars at declination 6 is proportional to cos 4. 1f the
observer’s latitude is ¢, stars culminate at M* = l/cos| 0 — ¢ |, as-

“suming a flat earth. The cutoff M, occurs at a declination

8y = ¢ — cos=1(1/M,). (3.1.71)

If we assume all stars poleward of §, are observed, including the small
region near the pole where M > M, at low latitudes, we have

/2 /2
W:J/ cosésec(&—gﬁ)dts/J ‘cos § do
[ O
cos(¢ — ds)

3.1.72
1 — sin §, ( )

Figure 19 shows the run of Eq. (3.1.72) with ¢ for several values of M,.
For moderate latitudes and M,, M ~ 1.5, which is a few tenths larger
than typical values of M. In fact, the same argument can be used to
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Fic. 19. Mean program-star air mass at culmination. Values of W, estimated ac-
cording to Eq. (3.1.72) for several values of M, as functions of the observer’s latitude
are shown. The dashed portions, to the left of the dotted curve, indicate the regions
where M > M, near the Pole.

estimate the factor m that appears in Eq. (3.1.64). For,
out = (Moq — M*) = (Mo)? — 20 oM* + M*,  (3.1.73)
where Eq. (3.1.72) gives M*, and
M* = fnlz cos d sec?(d — ¢) dé/J:dz cos 0 dd

) sec(dm — @) + tan(dn — ¢)
cos ¢ In[ sec(d, — ¢) + tan(d, — @) }
tin glsec(d — §) —seclin — )] ) (3 9

1 — sin §,

Figure 20 shows the course of Eq. (3.1.74) for the same values of M,
used in Fig. 19. These results allow the estimation of the air-mass variance
factor by means of Eq. (3.1.73) if M,y is specified. Figure 21 shows the
results for M, = 1.1 and 1.3, the typical values derived above.

As the values shown in Fig. 21 are several tenths at least, we can expect
our program stars to have rms extinction-produced errors that are likewise
several tenths of the error in the extinction coeflicient, according to Eq.
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(3.1.64). For example, a typical value of oy is about 0.4, if we are at a
moderate latitude and avoid stars that transit within about 25° of the
horizon. Then if ¢, the standard error in the extinction coefficient, is
0.01 mag/air mass, the resulting rms program-star error will be 0.004
mag. This may be acceptable in some kinds of work; on the other hand,
it is certainly larger than the random observational errors of the brighter
program stars if an aperture over 40 cm (16 in.) is used (see Part 2,
Table I). If a 90-cm (36-in.) telescope is used, this rms extinction error
exceeds the photon noise for stars brighter than eleventh magnitude, for
a 10-sec integration with B or V filter. Thus, if the final error caused

T

Fic. 20. Mean square program-star air mass }M*® at culmination, displayed as in
Fig. 19.
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Fic. 21. The rms air-mass difference oy between program and extinction stars, for
My = 1.1 (dashed) and 1.3 (solid curves), calculated from Eq. (3.1.73) in the text,
with the help of Eqgs. (3.1.72) and (3.1.74). As in Figs. 19 and 20, the large values at
low latitudes are due to the polar region where M > M.

by uncertainty in the extinction coefficient is to be kept smaller than the
observational errors, we must generally know the extinction coefficient
somewhat more precisely than 0.01 mag/air mass.

Let us again ask the question: what fraction F of the observing time
should be devoted to extinction, to make optimum use of telescope time ?
(Again, suppose initially that only one program star is used.) Having
determined our observational error law as a function of air mass, we can
compute the error o, to be expected from n.; observations (suitably
divided between M, and M,) of an extinction star; for example, by using
Eq. (3.1.12), or its graphical equivalent. Let us summarize this result as

04% = 0% Moy ‘ (3.1.75)
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Here ¢, may be thought of as the rms extinction error for one extinction
observation.
Combining Eqs. (3.1.61) and (3.1.64), we have

0% = ofps + 0.2 + oyt - 04 (3.1.76)

o%s and ¢,* may be approximated in terms of the air-mass-dependent
error law:
0,2 = 0 (Mext)/Mexs (3.1.77)

assuming the extinction stars are used to set the zero point, and
. Jp—
Oans == 02 (IM*) 11504« (3.1.78)

Now #,y and 7,4, the number of observations of the extinction and
program stars, respectively, are in the ratio

Hext/fiprog = F[(1 — F). (3.1.79)
Thus, Eq. (3.1.76) becomes

GZ(W) + 02(Mext) a0y?

N = 1) NF T TNF (3.1.80)

0% =
where N is the total number of observations. To find the optimum value
of F, we set do?/dF = 0: we find

Fl(1 — F) = [0*(M.y) + oy20,2]V3a(MF), (3.1.81)

or

F— [0*(Mexs) + oo’ (3.1.82)
[0*(Moxs) + 0ro?? + o(MF)

There are too many independent variables involved in Eq. (3.1.82)
to allow any universally applicable conclusions to be drawn (note that
the air-mass dependence of the random error law is involved in both o,
and M.y, and that M, is involved in M*). However, the two examples
used previously may be useful: pure scintillation noise; and scintillation
plus a large fixed error, such as occurs in the UBV standard stars.

In the first example, Eq. (3.1.12) applies, with p ~ 2. We shall assume
/=%, in accord with common practice, and then have M, ~ 2.2 for
best extinction measurement, if M, = 1. Equation (3.1.12) then gives
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0,® = 26.56,%; we already have My = 1.1; and M, =~ 2.5 gives M*
= 1.3 for moderate latitudes, and also o;; ~ 0.4. Thus o(M o) = 1.21¢,,
and U(m) = 1.69¢,. These values give F/(1 — F)=1.41,0or F = 0.59.
Thus, in this case, each extinction star should receive 1.41 times as much
attention as each program star. As each extinction star would normally
be observed 3 times per night (rising, setting, and at culmination), each
program star should be observed about twice, on the average. To indicate
the actual precision involved, the values of ¢, given in Table I of Part 2
can be inserted into Eq. (3.1.12) with # = 3: we find 04 ~ 0.003 mag/air
mass for a 40-cm (16-in.) telescope, and about 0.001 mag/air mass with a
150-cm (60-in.). Thus, the extinction can be determined very precisely
from just a few observations; the major practical requirement is to pro-
vide enough extinction measurements per hour to monitor the temporal
changes in the extinction coefficient with adequate accuracy. Finally, we
note that a final precision of a few thousandths of a magnitude should be
reached.

Now consider the case where large random errors of fixed size occur,
as in Hardie’s method. We suppose that a fixed random error of 0.02 mag
(rms) is present in the standard (extinction) stars, but that only scintilla-
tion noise [say, for a 40-cm (16-in.) aperture] affects the program stars.
In order to avoid the large systematic errors at large zenith distances, we
take M, = 4. The large standard-star error forces us to adept f ~ };
so from Eq. (3.1.60) we find ¢, = 0.0104 mag/air mass, for n = 2.
Thus o, = 0.0073 mag/air mass. Because the standard stars are dominated
by the large constant error, 0(M ) is very nearly 0.02 mag; however,

we may take o(M*) ~ 0.0014 mag, because program stars are affected
only by scintillation noise. If we again adopt gy, ~ 0.4, we have F ~ (.94
—in other words, between 14 and 15 standard stars should be observed
for one program star! The inefficiency of using the UBV “standards”
for extinction determination is manifest; in this case, it is impractical
to determine the extinction thoroughly and accomplish anything else.

(It should be borne in mind that the situation is even worse for larger
telescopes.)

Thus, the use of the relatively imprecise UBYV standard stars for meas-
uring the extinction causes the observer to throw away most of the
statistical weight in his raw data. Evidently, much higher precision
should be attained by directly measuring the extinction in the natural
system of the photometer. Of course, improved precision of the standard
stars (i.e., a revised standard system) might help; but it has not yet been

3.1. ATMOSPHERIC EXTINCTION 179

demonstrated that transformations between such broadband systen.lg, can
be made with the requisite accuracy (a few thousandths of a magnitude)
to allow even a revised set of standard values to replace direct instrumental

measurements of extinction.

3.1.8. Concluding Remarks on Extinction

If the inherent precision of modern photoelectric observations is to be
realized in the final published results, accurate measurements of (and

corrections for) atmospheric extinction are necessary. Such measurements

can readily be made, with relatively few observations, if proper attention
is paid to both instrumental and observational techmqut.a, and if the
reduction methods are properly matched to the observations. In par-

ticular, one should have:

(1) temperature regulation of all spectrally selective components
(filters, receiver, and standard source) to a few ten'ths of a degret‘e; .

(2) a large enough focal-plane diaphragm to m‘clude'essentlally all
the light of a star, at all zenith distances, to avoid secing-dependent
effects; _

(3) no observations at altitudes below abo'ut .20 ; .

(4) frequent-enough observations of extinction stars to monitor
changes in extinction with adequate accuracy; and

(5) a realistic reduction and weighting scheme, preferably based on
actual, measured characteristics of the instrument used.

If the extinction is determined from UBV “‘standard” val.uest it %s
difficult to achieve adequate precision. However, if the extinction is
measured directly in the instrumental system, only enou‘gh .observatmns
are needed to measure the time dependence of the extinction. For ex-
ample, if 15 stars/hr can be observed, about 5 of thee‘:e should be ex-
tinction stars. If each extinction star is observed 3 times (once ez-lch
rising, setting, and at transit), adequate coverage is achieved by se'lect}ng
one extinction star for each 35 min of right ascension from the declination
zone that passes within 20° of the observer’s zenith. If the ?bserver knows
from past experience that changes in extinctiorll are unlikely to oceur,
and/or is willing to discard nights on which significant changes exist,
the number of extinction stars might be reduced to 1/hr of R.A. (three
observations per hour of time). It does not appear wise to redl.Jce the
density of extinction stars below this level, which is already quite low
(only 209, of all observations).

ki
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Finally, the accuracy of the results depends on an accurate modeling
of instrumental and atmospheric characteristics in the reductions. This
means the use of an accurate air-mass formula (bearing in mind that 70
formula is accurate beyond two or three air masses); a physically based
(rather than empirical) correction for bandwidth (color-dependent)
effects; a proper choice between “colors” and “magnitudes” as observa-
tional variables; reduction of several nights together, if instrumental
stability permits; and a realistic weighting scheme.

It appears that if the work is carefully done, ground-based photometry
with a real accuracy of a few thousandths of a magnitude should be
possible.

3.2. Transformation to a Standard System

3.2.1. Introduction

The previous sections show how to obtain reproducible photometric
data and reduce them to outside the earth’s atmosphere. These reduced
data, however, are still on the natural system of the photometer, that is,
they are measurements made with the spectral response function of a
particular instrument. In most cases, one needs to compare and combine
observations made with different instruments. Thus we must “transform”
the instrumental magnitudes and colors to the values that would have
been measured with a standard instrument, having a different spectral
response.

Usually in astronomy, this is a real ipstrument which has measured
magnitudes and colors for a rather small list of “standard” stars, This is
a practical procedure because (a) many stars are in fact quite constant
over long periods of time, and (b) by using these measured objects as
standard lamps, there is no need to know the actual spectral response
of the instrument to perform the transformation. The latter is a very
important point; for (as explained in Section 2.2.1.1) absolute com-
parisons with laboratory standards are much more difficult and less
precise than comparisons between stars,

On the other hand, laboratory photometry is based on the tabulated
spectral response function of a mythical “standard observer,” so that, in
principle, one must know the instrumental spectral response (and match
it® to that of the standard observer). This does not lead to-a precisely
reproducible system, both because of the difficultics in making the

® H. Wright, C. L. Sanders and D. Gignac, dppl. Opt. 8, 2449 (1969).

3.2. TRANSFORMATION TO A STANDARD SYSTEM 181

necessary absolute measurements of spectral response, and because the
standard response function is not well defined between tabulated wave-
lengths (different interpolation schemes give different intermediate

values).
At first, these two approaches seem quite different, but they turn out -

to have many features in common. First, it is still highly‘desirable to
know the spectral response functions of standard asttonoml'cal systems,
so that model-atmosphere fluxes can be compared directly with observed
colors. This is closely related to the problems of establishing the st.ellar
effective-temperature scale, and of determining bolometric corrections.
Second, it turns out that matching the instrumental response to that of
the standard system is as important astronomically as in laboratory
photometry, because of difficulties in transformation. And finally, both
the laboratory photometric units and “‘visual” stellar magnitudes®™ are
historically based on measurements made with the human eye; the major
difference is that the labotatory units are based on the eye’s bright-
adapted (photopic) spectral response, but the astronomical systen'ls are
based on the mesopic or scotopic (dark-adapted).response, which is
shifted to shorter wavelengths. Thus the effective wavelength of labt?L'atory
photometry is near 5550 A, while that of the ¥ magnitude®% is near

5400 A.

3.2.2. Transformations for Blackbodies

3.2.2.1. Temperature Reddening. If we assume that the major (!if—
ference between instrumental and standard systems is one of eﬁect.xve
wavelength, the transformation can be done accurately for blackbodies.
-Because many stellar and laboratory sources have nearly blackbody spec-
tra, this is a useful and instructive result. ‘

The Planck formula for the blackbody flux per unit frequency in-
ferel K B, = 2ahvic=?|[exp(hv/kT) — 1], (3.2.1)

so,the monochromatic magnitude of a blackbody is

m, = —2.5 lbogm F,(T) + const
= —7.5log v - 2.5 log[exp(/iw/kT) — 1] -+ const.  (3.2.2)

2 ., F. Weaver, Popular Astron. 54, 211, 287, 339, 389, 451, 504 (1946).

# R. V. Willstrop, Mon. Notices Roy. Astron. Sec. 121, 17 (1960).

25 A. AZusienis and V. StraiZys, Bull. Vilninus Astron. Obs. No. 16, p. 3; No. 17, p. 3
(1966). See also Sov. Astron.~AJ 13, 316 (1969).
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At the high-frequency side of the curve exp(fv/kT) > 1, so we can adopt
the Wien approximation [drop the 1 in Eq. (3.2.2)] and write

m, ~ —7.5log v + 1.08k»[kT 4 const. (3.2.3)

Over a modest frequency interval, the curvature of log » is small, so
m, is nearly a linear function of » (= ¢/1). Thus if we have observed
monochromatic magnitudes m, and m, of a blackbody at frequencies
v, and »,, the magnitude m, at some nearby frequency v, can be found
by linear interpolation or extrapolation:

Ve — N1
Py = My + <—~*T~>(7n2 — #14)
Vo — M1

= my + a(m, — m,). (3.2.4a)

If we know the frequencies »,, v,, and v, , we can calculate the trans-
formation coefficient «; however, if we do not, it can be found em-
pirically from measurements of the same blackbody at all three fre-
quencies. )

We note that (m, — m,) in Eq. (3.2.4a) is a color index; thus the last
term is usually called the color term in the transformation. If the mag-
nitude scales are defined with arbitrary (e.g., instrument-dependent)
zero-point constants [on the right sides of Egs. (3.2.2) and (3.2.3)],
we will also have a zero-point term in Eq. (3.2.4a) which becomes

My = my + o(my, —my) + f. (3.2.4b)

There are now two transformation coefficients (« and f) to be determined.
If this is done empirically, we must observe at least two blackbodies of
different colors (i.e., temperatures) to find « and f.

Finally, if we measure in two narrow frequency bands v, and ,,,
we can write down two transformations similar to Eq. (3.2.4b), and by
subtraction find the linear transformation between the starred and the
unstarred color indices: .

(Mg — myy) = y(my — m;) + 6. (3.2.5)

Again, the transformation involves only a linear color term and a zero-
point term, which may be either computed from the definitions of the
four magnitude systems, or found empirically. The coefficient y, like «,
is just the ratio of frequency differences (or ““color baselines”) for the
starred and unstarred systems; in fact, Eq. (3.2.4b) is a special case of
Eq. (3.2.5) with myy, = m,, and m,, = m, .
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3.2.2.2. Atmospheric and Interstellar Reddening. In the approxima-
tions above, the monochromatic magnitudes of blackbodies are linear
functions of 1/1. Any selective extinction or reddening that is also (in
stellar magnitudes) a linear function of 1/ will be indistinguishable from
a change in blackbody temperature. In particular, the interstellar red-
dening is nearly proportional to 1/2 in the visible spectrum. Thus linear
color transformations are as applicable to reddened stars as to unreddened
ones.

Furthermore, the aerosol component of atmospheric extinction is also
approximately proportional to 1/4; and, over a limited wavelength in-
terval, the Rayleigh extinction in magnitudes (proportional to 1/A!) can
be approximated by a linear function of 1/A. [For example, a Taylor
series expansion about ;! gives

11 o1 )
e 4 4&03<7 _ A_o) - (4/103)<7) _ 3,104.]

Thus we expect the monochromatic extinction correction—regarded as a
transformation between intra- and extra-atmospheric systems, at a fixed
air mass—to be approximately a linear function of 1/A. In this approx-
imation, atmospheric reddening (like interstellar reddening) is indis-
tinguishable from temperature reddening; only our ability to calculate
the air mass and its effect allows us to correct for the atmosphere.

If all reddening is equivalent to temperature reddening, each object
can be assigned a unique color temperature 7,. Then Eq. (3.2.2)~(3.2.5)
show how measurements at different spectral frequencies are related.
Since only one parameter (a color, or a color temperature) is involved,
the same transformation applies to all objects, reddened and unreddened.
To the extent that broad-band magnitudes can be regarded as shifted
in effective wavelength by the addition of a colored filter (a fixed mass
of reddening atmosphere), their transformation to outside the atmosphere
should contain a linear color term; Eq. (3.1.57) shows that it does (namely,
the term in 4X).

How valid are these linear one-color transformations ? To derive them,
we have assumed (a) blackbody sources; (b) the Wien approximation;
(c) monochromatic measurements; and (d) | v, — v, | = A» < », so that
curvature in log » can be neglected. However, if 4y < », we can assume
m, is a linear function of » without the Wien approximation. Furthermore,
if our sources have sufficiently smooth spectra, we can assume linearity
of m, even if the sources are not blackbodies. Thus linear transformations
should be valid for any such sources, provided that dv < ».
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However, the spectra of real astronomical sources are not perféctly
smooth, but have absorption and/or emission features. Furthermore,
most astronomical color systems have (4v/v) ~ 0.1 or 0.2, i.c., not very
small. Consequently, such transformations are not sufficiently accurate
to preserve the inherent precision (<0.01 mag) of good photoelectric
photometry.

We can improve the transformation empirically by using additional

data. For example, if we have measurements in 3 bands instead of 2,
we can use a formula like

My = my + a(my — my) + f(m, —my) + . (3.2.6)

This has worked fairly well in some cases, e.g., where m,, is the red-leak
of the U filter, and the numbered bands are U, B, and V; however, it
fails for cool®® or reddened?s stars. As a second example, both Schmidt—
Kaler®* and Fernie and Marlborough?®” have found systematic transforma-

tion errors that are proportional to interstellar reddening. For O and B

stars, the reddening is a linear combination of (U~ B) and (B — V),

so Eq. (3.2.6) applies; but for later spectral types, a different, nonlinear '

relation in required. As a final example, Argue® used equations like
(3.2.6) to transform his observations of late-type stars, but found that
systematic differences between luminosity classes remained.

Clearly no linear, single-valued transformation is accurate enough to
preserve the full weight of good data. Every phenomenon we wish to
measure—temperature, luminosity, reddening, and probably also metal-
licity, rotation, and other peculiarities—seems to require a different
photometric transformation. Of course, a careful spectral analysis of
each star would provide this information, but this is self-defeating: one

of the main goals of multicolor photometry is to provide such data without
requiring spectra.

3.2.3. Transformations in General

3.2.3.1. The Problem. Must we then abandon hope of preserving
observational accuracy through the transformation to a standard system ?
To answer this, we must look more closely at the general transformation
problem. We saw that blackbody data could be transformed accurately

*% C.-Y. Shao and A. T. Young, Astron. J. 70, 726 (1965).

*T. Schmidt-Kaler, Observatory 81, 246 (1961).

* J. D. Fernie and J. M. Marlborough, Observatory 84, 33 (1964).
* A. N. Argue, Mon. Notices Roy. Astron. Soc. 125, 557 (1963).
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because they form a one-parameter family of spectral distributions. If
interstellar reddening, for example, were identical to temperature red-
dening, they would be indistinguishable, and the same transformation
would apply to both reddened and unreddened stars. In fact, they are
not: the spectral features (Balmer decrement and interstellar slope change
near 4500 A) that permit us to separate interstellar reddening from tem-
perature effects in early-type stars are the very features that produce
different transformation relations for the two groups. Each additional
effect, such as metallicity, luminosity, or rotation, must leave its signature
in the stellar spectrum, and hence in the transformation from one response
curve to another. The ad hoc treatment of each effect separately is not
very satisfactory, not only because it requires a huge number of standard
stars of different luminosity, reddening, etc., but also because it leaves
unsolved the problem of transforming peculiar objects (pulsars, quasars,
galaxies, planets, emission-line stars, nebulae,...) to a common basis.
Furthermore, these ad hoc treatments are in principle unable to cope
with the general problem of transforming observations of arbitrary spec-

~tral distributions, because the set of all possible spectra (one-valued

functions) is larger than a countable infinity, so that even a (countably)
infinite number of individual treatments is inadequate.

Another way® of viewing the transformation problem is to regard a
spectrum as a point or vector in an infinite-dimensional space: the co-
ordinates of the point, or components of the vector, are the spectral
power densities at successive wavelengths. A photometric measurement
in m different bands projects or maps the infinite-dimensional vector
into an m-dimensional subspace. Two such mappings can be mapped
into each other in a one-to-one way (i.e., two photometric systems are
related by a single-valued transformation) if the subspaces are linearly
dependent; the transformation then amounts to a rotation of axes in
m-dimensions. However, if one of the subspaces contains an appreciable
component orthogonal to the other subspace, this represents spectral
information not contained in the other, which is excluded by any trans-
formation between them. Thus two photometric systems are transform-
able if and only if the response functions of one are a linear combination
of the response functions of the other.

The concepts of linear dependence and information content suggest
an information-theory approach, as follows. Suppose we treat the general
problem of photometric transformations in a manner analogous to

2 3. H. Conant, Jr., Private communication (1959).
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King’s treatment'® of the extinction correction (i.e., the transformation
of broad-band data from inside to outside the atmosphere). King showed
that transformations between different systems depend on derivatives
of the energy distribution S(1) reaching the photometer, and on the
second (and higher) moments of the instrumental response function $(1)
about some effective wavelength 4;. The leading terms in the Taylor
series expansion about 1, depend on [d(In S)/d(In )] and the mean
square bandwidth @? In practice, we must approximate this unknown
derivative by a color index [cf., Eq. (3.1.51)].

However, different reddening mechanisms generally produce different
relations between [d(In S)/d(In )] and a color index which depends on
a second band centered at A,. We can write the color index in stellar
magnitudes as

Cy, = 1.086[In S(1;) — In S(4,)] (3.2.7)
and, expanding (In S) in a Taylor series at 4;, we have
- d(In S) ‘ -
In S(4,) — In S(4,) = “din ) (In 4, — In 4)
d?(In S) .
+ m . (ln 2.2 —In /11) + . 7 (3.2.8)

The first term in Eq. (3.2.8) is the theoretical justification for replacing
the logarithmic derivative by a color index. However, in fact, the second
(and higher-order) terms are appreciable in accurate photometry, and
differ for different reddening mechanisms. These terms would be small
if S(A) were a sufficiently “smooth” function. However, these terms are
quite large if S(A) has a kink near 1,—such as the Balmer jump in U,
or the interstellar reddening break in B. These higher-order terms spoil
the uniqueness of the transformation in terms of a color index, and
explain why different relations are required for stars of different reddening
and luminosity.

Making the bands narrower does not solve the problem, because then
individual spectral features play a larger part in proportion to the band
width, and small instrumental wavelength shifts due to temperature
variations and manufacturing tolerances become more important. Placing
the bands closer together helps, because of the powers of [In(4,/4,)]
which appears in the higher terms of Eq. (3.2.8). However, discrete
bands cannot be placed close enough together to solve the problem, even
if they are adjacent; for we can always encounter spectral distributions
which give the same response in each band, but have very different
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gradients across each band. Thus, cutting the spectrum up into adjacent

‘rectangular passbands, no matter how small, does not provide enough

information to solve the transformation problem.

At first glance, it may appear that since adjacent rectangular passbands
measure all the power in a spectrum, no more information can be ob-
tained, and the problem is insoluble. This is not the case, and we shall
show that a completely satisfactory solution is readily attainable. To do
this, we adopt a more fundamental point of view: we regard multicolor
photometry as low-resolution spectroscopy.

3.2.3.2. The Solution: A Spectroscopic Approach. Suppose we want
to determine the energy distribution in a star’s spectrum at some low
resolution—say, 500 A, which would yield a function S*(1’). Here A’
is the varying center wavelength of the spectral window, and the asterisk
indicates the effect of smearing the spectrum out by the slit function
W — ).

We could equally well measure the spectrum by using a Michelson
interferometer.®® The resulting interferogram (output intensity as a
function of path difference) is the Fourier transform of the spectrum; if
we only need low resolution, we need only measure the central part of
the interferogram (small path differences). In fact, the interferogram
(Fourier transform) of .S* is just the product of the Fourier transforms
of S and W.

We must realize that, as we actually only measure a part of the spec-
trum, and a part of the interferogram, the measured finite parts are not
exact Fourier transforms of each other. However, we can choose W so
that a reasonably short piece of the interferogram transforms into S* as
accurately as we wish. In particular, we can determine the values of S*
and its derivatives at every point in the spectrum, well enough to trans-
form our measurements to any photometric system which does not ex-
ceed the spectral resolution of our data.

In fact we can do this without using either a spectrum scanner or an
interferometer, by making regular photometric measurements through
a series of filters having W(1) as the passband shape. To prove this
assertion, we regard S*(1) as a real function on some interval (1, 4,).
Let its interferogram (Fourier transform) be

(@) = (2n)12 Jj S#(1) exp(iol) di, (3.2.9)

3 L. Mertz, “Transformations in Optics.” Wiley, New York, 1965.
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where the interferogram “frequency”  is not to be confused with optical
‘frequel‘lcy ¢/A. Now if we have chosen W(2) so that its transform w(w)
is neghgible for | o} > wyy, we guarantee that s¥*(w) is also negligible
o‘utside this range, even if S(4) consists of delta functions (emission
hnes-!). Then the sampling theorem® tells us that S* is completely
specified by its values at Ay i+ A omax, Ay + 27/ Wmaxy - .. . These
sampled values are simply photometric observations with filters spaced
AL = 7|,y apart in wavelength, as stated above.

In other words, we can render even an emission-line spectrum trans-
form.able to a standard system if we smear it out adequately by choosing
a suitable passband shape, Also, if we can handle emission nebulae, we
can certainly handle any star, no matter how peculiar. A special adv'an)ta‘ge
of such a system is that the same transformation applies to all objects
regardless of spectral peculiarities. Thus a small number of ordinar};
stars can be used as standards.

The' requirement that s*(w) be negligible beyond wy,, is necessary
to achle've accuracy in the reconstruction of S* from the samples. Any
hal.'momcs beyond w,,, will appear in the sampling as though they were
at image frequencies less than Omax SUCh a8 | 20,0 — © |, | 400 — o |
etc.,, a phenomenon known as aliasing. That is why we must choose’
W(2), and hence w(w), so as to prevent these images from appearing in
s%(w). We cannot make them vanish, but we can make them very small
beyo%}d some point; this is a standard problem in one-dimensional
a'po.chzation.32 For the UBV bands, frequencies o far beyond the sampled
hmlt‘w = n/42 are still important, and we may regard the UBV dif-
ficulties as due to the aliasing of these frequencies into the sampled
frequency range.

. To ensure that all transformation errors are less than some fraction f,
it suffices to require that the sum of the amplitudes of all Fourijer com-,
ponents with @ > ., be less than /, that is,

ot ido/ [T u) a0 <5 (3:2.10)

This condition cannot be met for a rectangular passband, whose ampli-
tudes fall off only as w2, [We should have seen this from the Gibbs

19:31:{. W. Ditchburn, “Light,” 2nd ed., chapter 20. Wiley (Interscience), New York,
32 P. Jacquinot and B. Roizen-Dossier, in Progr. Opt. 3, 31-184. See also A. Papoulis
J. Opt. Soc. Amer. 62, 1423 (1972). ’
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phenomenon, which results from truncating w(w) if W(A) is discon-
tinuous. Another example is the ringed diffraction pattern of a telescope
with sharpedged pupil.] Rectangular-passband photometry is clearly
nontransformable, for if a spectral line falls into one band and is excluded
from the next, there is no way to interpolate the result for an intermediate
band: the line is either in or out, but we cannot say which.

However, Eq. (3.2.10) can be satisfied by continuous band profiles;
the smoother the profile, the more rapidly w(w) becomes negligible, and
the farther apart in wavelength the bands may be placed. For example,
the sinusoidally modulated or “‘channelled” spectrum used by Walraven??
allows bands to be spaced approximately 41 = 1.11f¥/2], apart, where f
is the maximum transformation error and 1, is the full width between
minima of the spectral channel. Thus for f = 0.01, 41 = 4,/9, which is
just under % of the full width of a channel at half response.

This may seem a close spacing; but the problem is considerably worse
with most glass or interference filters, which give steep-sided or asym-
metric passbands with higher harmonic content (bigger Fourier com-
ponents at large w). The deeply overlapping bands required for accurate
transformation may look redundant at first glance, but the sampling
theorem shows that they are not—in fact, they provide just enough pieces
of independent information to allow accurate transformations. One can
show, for example, that steep-sided filters like those of the UBV system
must be spaced about 100 A apart to allow accurate transformation. Hence
the observed transformation errors represent severe aliasing, due to
undersampling by about a factor of 10. The same problems must also
occur with the numerous narrower-band systems that have been intro-
duced, as they also have poor overlap between bands.

3.2.4. Matching Response Functions

Until inherently transformable systems are in general use, the photom-
etrist’s best hope is to measure his response functions, and, by choosing
appropriate filters and detectors, match them as closely as possible to
the standard response functions (if these are known). The results of
trial-and-error matching are reported by Hardie;* methods of designing

8T, Walra&en, Bull. Astron. Inst. Netherlands 15, 67 (1960).

t Systematic transformation errors “‘up to several hundredths of a magnitude” have
been found in the Stromgren uovby system [J. A. Graham and Arne Slettebak, Astron. J.

78, 295 (1973).]
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a close match are given by Wright et al®® The UBV:- response Functions
are not accurately retrievable; a most careful reconstruction has been
done by the Vilnius group.® The authors of newer systems have been
somewhat more careful in measuring filter passbands, but other in-
“strumental factors (transmission, and detector response) are oftén neg-
lected. The narrow-band systems may be more difficult to repi’oduce,
because of steep-sided and ripple-topped interference filters; also, a
10-A error is a larger fraction of the bandwidth of a 100-A filter.

To duplicate existing systems with the greatest accuracy, it should
prove helpful to use two instrumental bands similar in shape to the
standard, but differing in effective wavelength by a small fraction of the
band width, such as a pair of Hardie’s “visual” fliers. Interpolation
between these, using the short-baseline color they define, should give
a much more, accurate trapnsformation to a standard system than does
the usual transformation using long-baseline (i.e., equal to or exceeding
the band width) colors. OFf eourse, this doubles the Iabor of measurement.
However, halving the duration of each observation would leave the
total time fixed. The resulting 2'/? increase in random errors may be a
small price te pay for a large decrease in systematic transformation EITOrS,
if (as is often the case) the latter are the more important.

3.2.5. Mathematical Models

In King’s analysis of the extinction transformation,” the measured

quantity is expanded in a series whose terms are products of (a) the.

central moments [such as w® in Eq."(3.1.45)] of the instrumental response
function, and (b) the wavelength derivatives (such as NV and #) of the

stellar spectrum and of the atmospheric extinction. High-order terms

in this series can be neglected if, with increasing order, the instrumental
moments decrease (which means using sufficiently narrow bands) and
the atmospheric derivatives remain moderate (which means avoiding
regions of molecular absorption).

. The major problem with existing systems is that color indices formed
from undersampled spectral data provide a poor estimate of the spectral
gradient IV within each band. If adequately sampled clata were used, the
linear approximations derived above should be quite accurate, both for
the color term in the extinction and for the color terms in transformation
from instrumental to standard systems. In the case of the instrumental
factors, we note that two types of deviations from the standard response
functions occur. The first, contributed primarily by the ratio of response
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curves of the standard and instrumental photomultipliers, is a smooth
function,™ like the atmospheric transmission. We already know from
King’s analysis that a linear color term takes care of this very well.
The second problem is the displacement of filter cutoffs from their stan-
dard wavelengths, due to manufacturing errors or temperature shifts.
This alters the effective wavelength of an instrumental passband; but a
linear color transformation is adequate to correct for this if Eq. (3.2.10)
is satisfied. However, even if adequate sampling is used, a formula in-
volving several color indices, such as Eq.*(3.2.6) may be required; if
# adjacent barids overlap, it seems best to use an z-point interpolation
formula to reduce them to the standard magnitude m,, at frequency .
Undersampled data will generally require nonlinear terms to allow, in
part, for aliasing. i

Whatever analytical form is chosen to represent the data, there remains
the statistical problem of finding the best coefficients to use in this formula,
A blind application of least squares may produce systematic errors, as
the following example shows: Suppose we make two different sets of
measurements of the same stars with the same photometer, which remains
absolutely unchanged between the two series. Owing to experimental
errors, the values obtained for the same star will be slightly different
in the two series; how do we combine them? Now, we know the two
sets are on the same photometric system, so that in Eq. (3.2.5), for ex-
ample, we must have y = 1 and & = 0. However, we also know from
linear regression theory that the expected least squares value of y will
be less than unity (and 6 >.0) because of the imperfect correlation
produced by the random errors. Thus a least squares fit of one set of
data to the other will produce systematic errors, which depend on the
relative sizes of the errors in' the two sets of data.' Other systematic
effects arise because of partially correlated errors between terms with a
common element [e.g., V and (B — V), or (B — V) and (U — B).]
Such problems (and their solutions) are discussed at length by Deeming,*
who shows that systematic errors of 0.005 mag in (B — V) are readily
attained in ordinary photometry. .

Such systematic errors are serious enough in themselves, for they’
are larger than the random eriors of good ob'ser(rations. However, they
can become multiplied severalfold in some situations. For example,

T, J. Deeming, Vistas Astron. 10, p. 125.

tSuch a situation exists between “summer” and “winter” UBV standard stars.®®
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photometry of a faint variable star in a globular cluster or nearby galaxy
may be done photographically, relative to comparison stars which have
also been calibrated photographically, against faint (~17 mag) photo-
electric standards, which in turn are related to brighter “secondary
standards” (~10 mag), which have been transformed to match some
bright “‘standard stars” that were originally tied to a few “primary stan-
dards.” Often a big telescope is used for the faint stars, but the brighter
“secondary standards” have been set up using a smaller telescope. Thus
the faint stars on which the distance scale hangs are separated from
bright nearby standards by 3 or 4 transformations, with cumulative
systematic errors at each step. As the systematic effects depend on the
squares of the random errors, they can be quite large at the faint end of
the scale. These transformation errors, of course, are in addition to any
scale errors due to nonlinearity over a large dynamic range,

Thus, as in correcting for extinction, the photometrist must carefully
match his mathematical techniques to the actual situation at hand. A
poor choice of model, or misuse of least squares, can produce large
systematic errors, even with small residuals.

4. RESHAPING AND STABILIZATION OF
ASTRONOMICAL IMAGES*

4.1. Reshaping of Images

4.1.1. Definitions

The terms used to describe pencils of radiation differ between astrono-
mers and optical physicists. Table I shows the equivalences, and illus-
trates the potential confusion due to different uses of the same word.
The astronomical terms will be adopted here. The task of the astronomical
spectroscopist is to gather the maximum possible radiant power from a

TaBLe I. Comparison of Terminologies Used in Astronomy and Optics®

Astronomy Optics Units
1. (Specific) intensity Radiance, brightness erg cm~? sy~ sec—!
2. Flux (Illumination, emittance) erg cm~? sec™!
3. (Radiant power) Flux S erg sec~?
4, (Luminosity/4st) Intensity Ly ’ erg sr~! sec—?!

* Parentheses indicate that the correspondence is not exact, or that the term is not
standard.

given source, and to disperse and detect it appropriately. A useful param-
eter of a telescope or spectroscope is its throughput, the product of area
4 and solid angle Q that the instrument accepts. (Other terms in use are
étendue, Lipht-gathering power, and luminosity; the last seems especially
inappropriate because’ of its other meanings.) The solid angle for a
sizable telescope can usefully be taken as that of a typical seeing disk
under moderately good conditions, that is, a circle of 1-arcsec radius,
or 7.4 % 10~ sr, Refined work on extended sources, such as the sun and

* Part 4 is by Donald M. Hunten.
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